Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89101
標題: Elevated of CO2 and AM fungi effect on tomato plant and subsequently on Spodoptera litura performance
二氧化碳濃度提升以及囊叢枝菌對於番茄和斜紋夜蛾之影響
作者: 張麗婷
Papitchaya Teawkul
關鍵字: AM fungi;Elevated CO2;Plant-insect interaction;tomato;Spodoptera litura;叢枝菌根菌;二氧化碳上升;昆蟲-植物交互作用;番茄;斜紋夜蛾
引用: References of Thesis Introduction Agrawal, R., Satlewal, A., Varma, A., 2015. Characterization of plant growth-promoting hizobacteria (PGPR): perspective of conventional versus recent techniques. Soil Biol. 44, 471-485. Amthor, J.S., 2000. Direct effect of elevated CO2 on nocturnal in situ leaf respiration in nine temperature deciduous tree species is small. Tree Physiol. 20, 139-144. Bader, M.K.F., Leuzinger, S., Keel, S.G., Siegwolf, R.T.W., Hagedorn, F., Schleppi, P., Körner, C., 2013. Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J. Ecol. 101, 1509-1519. Battipaglia, G., Zalloni, E., Castaldi, S., Marzaioli, F., Gatti, R.C., Lasserre, B., Tognetti, R., Marchetti, M., Valentini, R., 2015. Long tree-ring chronologies provide evidence of recent tree growth decrease in a central African tropical forest. PloS one. 10, 1-21. Bhattacharjee, P., Chakraborty, B., Chakraborty, U., 2015. Field evaluation of vermicompost and selective bioinoculants for the improvement of health status of tomato plants. Int. J. Earth Sci. 5, 25-33. Burton, A.J., Pregitzer, K.S., 2001. Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field. Tree Physiol. 22, 67-72. Christie, P., Li, X., Chen, B., 2004. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil. 261, 209-217. Dawes, M.A., Hagedorn, F., Zumbrunn, T., Handa, I.T., Hättenschwiler, S., Wipf, S., Rixen, C., 2011. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytol. 191, 806-818. Diyansah, B., Aini, L., Hadiastono, T., 2014. The effect of PGPR (plant growth promoting rhizobacteria) Pseudomonas fluorescens and Bacillus subtilis on leaf mustard plant (Brassica juncea L.) infected by TuMV (turnip mosaic virus). J. Plant Prot. Res. 1, 30-38. Ellsworth, D.S., Thomas, R., Crous, K.Y., Palmroth, S., Ward, E., Maier, C., DeLucia, E., Oren, R., 2012. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Global Change Biol. 18, 223-242. Griggs, D.J., Noguer, M., 2002. Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather. 57, 267-269. Hopkins, W.G., Huner, N.P.A., 2009. Responses of plants to environmental stresses. Plant Physiology 4, 223-239. Jablonski, L.M., Wang, X., Curtis, P.S., 2002. Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol. 156, 9-26. Khan, A.G., Belik, M., 1995. Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In: Varma, A., (Ed.): Mycorrhiza. Springer, Berlin. pp. 627-666. Knepp, R.G., Hamilton, J.G., Mohan, J.E., Zangerl, A.R., Berenbaum, R., DeLucia1, E.H., 2005. Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol. 167, 207-218. Kopper, B.J., Lindroth, R.L., 2003. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134, 95-103. Lindroth, R.L., Kinney, K.K., Platz, C.L., 1993. Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74, 763-777. Lukac, M., Calfapietra, C., Lagomarsino, A., Loreto, F., 2010. Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiol. 30, 1209-1220. Mayak, S., Tirosh, T., Glick, B.R., 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci. 166, 525-530. Medlyn, B.E., Barton, C.V.M., Broadmeadow, M.S.J., Ceulemans, R., Angelis, P.D., Forstreuter, M., Freeman, M., Jackson, S.B., Kellomäki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B.D., Strassemeyer, J., Wang, K., Curtis, P.S., Jarvis, P.G., 2001. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247-264. Nadeem, S.M., Ahmad, M., Zahirc, Z., Javaid, A., Ashraf, M., 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32, 429-448. Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can. J. Microbiol. 53, 1141-1149. Pearson, P.N., Palmer, M.R., 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695-699. Percy, K.E., Awmack, C.S., Lindroth, R.L., Kubiske, M.E., Kopper, B.J., Isebrands, J.G., Pregitzer, K.S., Hendre, G.R., Dickson, R.E., Zak, D.R., Oksanen, E., Sober, J., Harrington, R., Karnosky, D.F., 2002. Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420, 403-407. Phiri, S., Barrios, E., Rao, I.M., Singh, B.R., 2001. Changes in soil organic matter and phosphorus fractions under planted fallows and a crop rotation system on a Colombian volcanic-ash soil. Plant and Soil. 231, 211-223. Raza, M.M., Khan, M.A., Arshad, M., Sagheer, M., Sattara, Z., Shafia, J., Haq, E., Ali, A., Aslam, U., Mushtaq, A., Ishfaq, I., Sabir, Z., Sattar, A., 2015 Impact of global warming on insects. J. Plant Prot. Res. 48, 84-94. Safronova, V.I., Stepanok, V.V., Engqvist, G.L., Alekseyev, Y.V., Belimov, A.A., 2006. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils. 42, 267-272. Sripontan, Y., Tan, C.W., Hung, M.H., Young, C.C., Hwang, S.Y., 2014. Effects of plant-growth-promoting microorganisms and fertilizers on growth of cabbage and tomato and Spodoptera litura performance. J. Asia-Pac. Entomol. 17, 587-593. Upadhyay, S.K., Singh, J.S., Singhd, P., 2011. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21, 214-222. Willis, A., Rodriguesb, B.F., Harrisa, P.J.C., 2013. The ecology of arbuscular mycorrhizal fungi. Crit. Rev. Plant Sci. 32, 1-20. References Ainsworth, E.A., Rogers, A., 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270. Amthor, J.S.,1995. Terrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycle. Glob. Change Biol. 1, 243–274. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. Brooks, G.L., Whittaker, J.B., 1998. Responses of multiple generations of Gastrophysa viridula, feeding on Rumex obtusifolius, to elevated CO2. Glob. Change Biol. 4, 63–75. Campbell, C.D., Sage, R.F., Kocacinar, F., Way, D.A., 2005. Estimation of the whole-plant CO2 compensation point of tobacco (Nicotiana tabacum L.). Glob. Change Biol. 11, 1956–1967. Cheng, W., Sakai, H., Yagi, K., Hasegawa, T., 2009. Interactions of elevated CO2 and night temperature on rice growth and yield. Agric. For. Meteorol. 149, 51–58. Cipollini, M., Paulk, E., Cipollini, D.F., 2002. Effect of nitrogen and water treatment on leaf chemistry in Horsenettle (Solanum carolinense), and relationship to herbivory by Flea beetles (Epitrix spp.) and tobacco hornworm (Manduca sexta). J. Chem. Ecol. 28, 2377–2397. Cotrufo, M.F., Ineson, P., Scott, A., 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob. Change Biol. 4, 43–54. Coviella, C.E., Stipanovic, R.D., Trumble, J.T., 2002. Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. J. Exp. Bot. 53, 323–331. Curtis, P.S., Wang, X., 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia 113, 299–313. DeLucia, E.H., Nabity, P.D., Zavala, J.A., Berenbaum, M.R., 2012. Climate change: resetting plant-insect interactions. Plant Physiol. 160, 1677–1685. Dermody, O., O'Neill, B.F., Zangerl, A.R., Berenbaum, M.R., DeLucia E.H., 2008. Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem. Arthropod-Plant Interact. 2, 125–135. Ellsworth, D.S., Thomas, R., Crous, K.Y., Palmroth, S., Ward, E., Maier, C., DeLucia, E., Oren, R., 2012. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Glob. Change Biol. 18, 223–242. Ferris, R., Sabatti, M., Miglietta, F., Mills, R.F., Taylor, G., 2001. Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. Plant Cell Environ. 24, 305–315. Finn, G.A., Brun, W.A., 1982. Effect of atmospheric CO2 enrichment on growth, nonstructural carbohydrate content, and root nodule activity in soybean. Plant Physiol. 69, 327–331. Gao, F., Zhu, S.R., Sun, Y.C., Du, L., Parajulee, M., Kang, L., Ge, F., 2008. Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica. Environ. Entomol. 37, 29–37. Hartley, S.E., Jones, C.E., Couper, G.C., Jones, T.H., 2000. Biosynthesis of plant phenolic compounds is elevated atmospheric CO2. Glob. Change Biol. 6, 497–506. Hunter, M.D., 2001. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agric. For. Entomol. 3, 153–159. IPCC, 2001. Climate Change 2001: The Scientific Basis. IPCC third assessment report, Working group I, Technical Summary, Cambridge University Press, Cambridge, UK. Knepp, R.G., Hamilton, J.G., Mohan, J.E., Zangerl, A.R., Berenbaum, M.R., DeLucia, E.H., 2005. Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol. 167, 207–218. Koiwa, H., Bressan, R.A., Hasegawa, P.M., 1997. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2, 379–384. Lang, C.A., 1958. Simple microdetermination of Kjeldahl nitrogen in biological materials. Anal. Chem. 30, 1692–1694. Lin, L., Shen, T.C., Chen, Y.H., Hwang, S.Y., 2008. Responses of Helicoverpa armigera to tomato plants previously infected by ToMV or damaged by H. armigera. J. Chem. Ecol. 34, 353–361. Lindroth, R.L., Kinney, K.K., Platz, C.L., 1993. Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74, 763–777. Lindroth, R.L., Kopper, B.J., Parsons, W.F.J., Bockheim, J.G., Karnosky, D.F., Hendrey, G.R., Pregitzer, K.S., Isebrands, J.G., Sober, J., 2001. Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environ. Pollut. 115, 395–404. Lukac, M., Calfapietra, C., Lagomarsino, A., Loreto, F., 2010. Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiol. 30, 1209–1220. Meehl, G.A., et al., 2007. Global climate projections. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change. : Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Moran, P.J., 1998. Plant-mediated interactions between insects and a fungal plant pathogen and the role of plant chemical responses to infection. Oecologia 115, 523–530. Owensby, C.E., Ham, J.M., Knapp, A.K., Auen, L.M., 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Glob. Change Biol. 5, 497–622. Parkinson. J.A., Allen, S.E., 1975. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plant Anal. 6, 1–11. Penuelas, J., Estiarte, M., Kimball, B.A., Idso, S.B., Pinter, P.J., Wall, G.M., Garcia, R.L., Hansaker, D.J., LaMorte, R.L., Hensrik, D.L., 1996. Variety of responses of plant phenolic concentration to CO2 enrichment. J. Exp. Bot. 47, 1463-1467. Rodriguez-Saona, C., Chalmers, J.A., Raj, S., Thaler, J.S., 2005. Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143, 566–577. Rogers, A., Allen, D.J., Davey, P.A., Morgan, P.B., Ainsworth, E.A., Bernacchi, C.J., Cornic, G., Dermody, O., Dohleman, F.G., Heaton, E.A., Mmhoney, J., Zhu, X.G., Delucia, E.H., Ort, D.R., Long, S.P., 2004. Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon dioxide Enrichment. Plant Cell Environ. 27, 449–458. Roth, S., Lindroth, R.L., Volin, J.C., Kruger, E.L., 1998. Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performance. Glob. Change Biol. 4, 419–430. Ryan, J.D., Gregory, P., Tingey, W.M., 1982. Phenolic oxidase activities in glandular trichomes of Solanum berthaultii. Phytochem. 21, 1885–1887. Saini, H.S., Wratten, N., 1987. Quantitative determination of total glucosinolates in rapeseed and meal digests. J. AOAC 70, 141–145. Schaedler, M., Roeder, M., Brandl, R., Matthies, D., 2007. Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Glob. Chang Biol. 13, 1005–1015. Solomon, S., Plattner, G.K., Knutti, R., Friedlingstein, P., 2008. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 106, 1704–1709. Srinivasa, R.M., Manimanjari, D., Vanaja, M., Rama, R.C.A., Srinivas, K., Rao, V.U.M., Venkateswarlu, B., 2012. Impact of elevated CO2 on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. J. Insect Sci. 12, 1–10. Stiling, P., Cornelissen, T., 2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob. Change Biol.13, 1823– 1842. Stout, M.J., Fidantsef, A.L., Duffey, S.S., Bostock, R.M., 1999. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54, 115–130. Sudderth, E.A., Stinson, K.A., Bazzaz, F.A., 2005. Host-specific aphid population responses to elevated CO2 and increased N availability. Glob. Change Biol. 11, 1997–2008. Sun, Y.C., Feng, L., Gao, F., Ge, F., 2011. Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids. Insect Sci. 18, 451–461. Thaler, J.S., Stout, M.J., Karban, R., Duffey, S.S., 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22, 1767–1781. Valkama, E., Koricheva, J., Oksanen, E., 2007. Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Glob. Change Biol. 13, 184–201. van Dam, N.M., Horn, M., Mares, M., Baldwin, I.T., 2001. Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. J. Chem. Ecol. 27, 547–568. Velioglu, Y.S., Mazza, G., Gao, L., Oomah, B.D., 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46, 4113–4117. Waldbauer, G.P., 1968. The consumption and utilization of food by insects. Advances in Insect Physiol. 5, 229–288. Warren, J.M., Norby, R.J., Wullschleger, S.D., 2011. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130. Williams, R.S., Thomas, R.B., Strain, B.R., Lincoln, D.E., 1997. Effects of elevated CO2, soil nutrient levels, and foliage age on the performance of two generations of Neodiprion lecontei (Hymenoptera: Diprionidae) feeding on loblolly pine. Environ. Entomol. 26,1312–1322. Williams, R.S., Lincoln, D.E., Norby, R.J., 2003. Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Oecologia 137, 114–122. Xu, Z., Shimizu, H., Ito, S., Yagasaki, Y., Zou, C., Zhou, G., Zheng, Y., 2014. Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta 239, 421–435. Yadav, J., Tan, C.W., Hwang, S.Y., 2010.Spatial variation in foliar chemicals within radish (Raphanus sativus) plants and their effects on performance of Spodoptera litura.Environ. Entomol. 39, 1990–1996. Yelle, S., Beeson, R.C., Trudel, M.J., Gosselin, A., 1989. Acclimation of two tomato species to high atmospheric CO2. Plant Physiol. 90, 1465–1472. Yeoman, M.M., Yeoman, C.L., 1996. Manipulating secondary metabolism in cultured plant cells. New Phytol. 134, 553–569. Zavala, J.A., Nabity, P.D., DeLucia, E.H., 2013. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Ann. Rev. Entomol. 58, 79–97. Zeppel, M.J.B., Lewis, J.D., Chaszar, B., Smith, R.A., Medlyn, B.E., Huxman, T.E., Tissue, D.T., 2012. Nocturnal stomatal conductance responses to rising [CO2], temperature and drought. New Phytol. 193, 929–938. Zeppel, M.J.B., Lewis, J.D., Medlyn, B., Barton, C.V.M., Duursma, R.A., Eamus, D., Adams, M.A., Phillips, N., Ellsworth, D., Forster, M.A., Tissue, D.T., 2011. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna. Tree Physiol. 31, 932–944. References Agrell, J., Kopper, B., McDonald, E.P., Lindroth, R.L., 2005. CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Global Change Biol. 11, 588-599. Ainsworth, E.A., Long, S.P., 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 16, 351-372. Awmack, C.S., Leather, S.R., 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817-844. Bazzaz, F.A., Chiariello, N.R., Coley, P.D., Pitelka, L.F., 1987. Allocating resources to reproduction and defense. BioSci. 37, 58-67. Beyeler, M., Heyser, W., 1997. The influence of mycorrhizal colonization on growth in the greenhouse and on catechin, epicatechin and procyanidin in roots of Fagus sylvatica L. Mycorrhiza 7, 171-177. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. Brundrett, M., 2004. Diversity and classification of mycorrhizal associations. Biol. Rev. 79, 473-495. Chen, F., Wu, Gang., Ge1, F., Parajulee, M.N., Shrestha, R.B., 2005. Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm. Entomol. Exp. Appl. 115, 341-350. Cipollini, D., Enright, S., Traw, M.B., Bergelson, J., 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol. Ecol. 13, 1643-1653. Cornelissen, T., 2011. Climate change and its effects on terrestrial insects and herbivory patterns. Neotropical Entomol. 40, 155-163. Coviella, C.E., Stipanovic, R.D., Trumble, J.T., 2001. Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. J. Exp. Bot.53, 323-331. DeLucia, E.H., Nabity, P.D., Zavala, J.A., Berenbaum, M.R., 2012. Climate change: resetting plant-insect interactions. Am. Soc. of Plant Biologists 160, 1677-1685. Douglas, A.E., 2003. The nutritional physiology of aphids. Adv. Insect Physiol. 31, 73-140. Drake, B.J., Gonza`lez-Meler, M.A., Long, S.P., 1997. More efficient plants: a consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609-639. Drew, E.A., Ballard, R.A., 2010. Improving N2 fixation from the plant down: compatibility of Trifolium subterraneum L. cultivars with soil rhizobia can influence symbiotic performance. Plant and Soil 327, 261-277. Edathil, T.T.S., Udaiyan, M.K., 1996. Interaction of multiple AM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum Mill.). Agriculture, Ecosyst. & Environ. 59, 63-68. Ferris, R., Sabatti, M., Miglietta, F., Mills, R.F., Taylor, G., 2001. Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. Plant, Cell & Environ. 24, 305-315. Gardner, S.D.L., Taylor, G., Bosac, C., 1995. Leaf growth of hybrid poplar following exposure to elevated CO2. New Phytol. 131, 81-90. Gehring, C.A., Whitham, T.G., 2002. Mycorrhizae-herbivore interactions: population and community consequences. Mycorrhizal ecology. Springer, Berlin, Germany. Graaff, M.D., Groenigen, K.V., Six, J., Hungate, B., Kessel, C.V., 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biol. 12, 2077-2091. Hawkins, H.J., Johansen, A., George, E., 2000. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil. 226, 275-285. Hoeksema, J.D., Chaudhary, V.B, Gehring, C.A., Johnson, N.C., Karst, J., Koide, R.T., Pringle, A., Zabinski, C., Bever, J.D., Moore, J.C., Wilson, G.W.T., Klironomos, J.N., Umbanhowar, J., 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Letters 13, 394-407. Hughes, L., Bazzaz, F.A., 1997. Effect of elevated CO2 on interactions between the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) and the common milkweed, Asclepias syriaca. Oecologia 109, 286-290. Hynes, R.K., Leung, G.C.Y., Hirkala, D.L.M., Nelsona, L.M., 2008. Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Can. J. Microbiol. 2008. 54, 248-258. IPCC. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Cambridge University Press, Cambridge, UK. Karowe, D.N., Seimens, D.H., Mitchell-Olds, T.,1997.Species-Specific response of glucosinolate content to elevated atmospheric CO2. J. Chem. Ecol. 23, 2569-2582. Klaiber, J., Dorn, S., Najar-Rodriguez, A.J., 2013. Acclimation to elevated CO2 increases constitutive glucosinolate levels of Brassica plants and affects the performance of specialized herbivores from contrasting feeding guilds. J. Chem. Ecol. 39, 653-665. Klaiber, J., Najar-Rodriguez, A.J., Dialer, E., Dorn, S., 2013. Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biol. Control 66, 49-55. Koricheva, J., Gange, A.C., Jones, T.,2009. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecol. 90, 2088-2097. Körner, C., 2003. Carbon limitation in trees. J. Ecol. 91, 4-17. Lappalainen, J.H., Koricheva, J., Helander, M.L., Haukioja, E., 1999. Densities of endophytic fungi and performance of leafminers (Lepidoptera: Eriocraniidae) on birch along a pollution gradient. Environ. Pollut. 104, 99-105. Leigh, J., Hodge, A., Fitter, A.H., 2009. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol. 181, 199-207. Lindroth, R.L., Kinney, K.K., Platz, C.L., 1993. Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry and insect performance. Ecol. 74, 763-777. Long, T.P., E Ainsworth, L.A., Leakey, A.D.B., Nösberger, J., Ort, D.R., 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Sci. 312, 1918-1921. Mader, P., Fliebbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U., 2002. Soil fertility and biodiversity in organic farming. Sci. 296, 1694-1697. Mamatha, H., Srinivasa, R.N.K., Laxman, R.H., Shivashankara, K.S., Bhatt, R.M., Pavithra, K.C. 2014. Impact of elevated CO2 on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum Mill) cv. Arka Ashish. Photosynthetica 52, 519-528. Marschner, H., Dell, B., 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil. 159, 89-102. Massad, T.J., Dyer, L.A., 2010. A meta-analysis of the effects of global environmental change on plant-herbivore interactions. Arthropod-Plant Interact. 4, 181-188. Mechri, B., Mariem, F.B., Baham, M., Elhadj, S.B., Hammami, M., 2008. Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 40, 152-161. Muthukumar, T., Udaiyan, K., 2002. Growth and yield of cowpea as influenced by changes in arbuscular mycorrhiza in response to organic manuring. J. Agron and Crop Sci. 188, 123-132. Parkinson, J.A., Allen, S.E., 1975. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Comm. Soil Sci. Plant Anal. 6, 1-11. Penuelas, J., Estiarte, M., Kimball, B.A., Idso, S.B., Jr, P.P.J., Wall, G.W., Garcia, R.L., Hansaker, D.J., LaMorte, R.L., Hendrix, D.L., 1996. Variety of responses of plant phenolic concentration to CO2 enrichment. J. Exp. Bot. 47, 1463-1467. Power, M.E., Mills, L.S., 1995. The keystone cops meet in Hilo. Trends Ecol. Evol. 10, 182-184. Quilambo, O.A., 2003. The vesicular-arbuscular mycorrhizal symbiosis. J. Biotechnol. 2, 539-546. Reddy, G.V.P., Guerrero, A., 2004. Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci. 9, 253-261. Rodriguez-Saona, C., Chalmers, J.A., Raj, S., Thaler, J.S., 2005. Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143, 566-577. Robinson, E.A., Ryan, G.D., Newman, J.A., 2012. A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194, 321-336. Saini, H.S., Wratten, N., 1987. Quantitative determination of total glucosinolates in rapseed and meal digests. J. Assoc. Anal. Chem. 70, 141-145. Schädler, M., Roeder, M., Brandl, R., Matthies, D., 2007. Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Global Change Biol. 13, 1005-1015. Schoonhoven, L.M., van Loon, J.J.A., Dicke, M., 2005. Insect-plant Biology, second ed.. Oxford University Press, Oxford. Smith, S.E., Jakobsen, I., Gronlund, M., Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156, 1050-1057. Stout, M.J., Duffey, S.S., 1996. Characterization of induced resistance in tomato plants. Entomol. Exp. Appl. 79, 273-83.
摘要: 
The elevated carbon dioxide (CO2) in the atmosphere due to climate change has been found to impact the relative amount of carbon and nutrients in the plants. The changes in plant chemistry are major factors resolving the value of a plant as a food source to herbivorous insects. However, past studies most focused on effects of CO2 on temperate forest trees; little is known about effects of elevated CO2 on crop plants in the subtropical areas. The purpose of this study assessed the effect of elevated CO2 and soil microbial on chemistry, performance of plant and their insect pest. This thesis can be divided into two chapters; in chapter one, the effects of CO2 on tomato plant (Lycopersicon esculentum Mill.) performance, chemistry, and subsequently on Spodoptera litura performance had been investigated. The results indicated that the elevated CO2 had positive effect on tomato plant's performance. However, elevated CO2 negatively affected plant nutrition. In addition, the raised CO2 concentration had negative impact on the growth performance of S. litura larvae. Besides the effects of elevated CO2, the effect of beneficial microorganism is known for the promotion of plant growth and the improvement of the plant nutrition status. Only handful studies have focused on the interaction of elevated CO2 and arbuscular mycorrhizae (AM) fungi to plants and insects. The objective of the second chapter of this study assessed the effect of elevated CO2 and AM fungi on tomato plant growth, foliar chemistry, and on subsequently S. litura performance. This research revealed that both the elevated CO2 and AM fungi can strongly influence the physiology and foliar chemistry of tomato plants. Moreover, the changes of phytochemistry in the plants may play an important role in affecting the growth performance of insect.

隨著氣候變遷和二氧化碳濃度提升,植物之碳與營養物質的相對含量可能受其影響而改變。植物內部化學物質的改變,可能會進一步對於其植食性昆蟲造成影響。過去之研究多著重於探討二氧化碳上升對於溫帶林木的影響,鮮少討論其對於亞熱帶地區作物的影響。本試驗將探討二氧化碳上升以及施加微生物肥料後,對於植物之表現與化學物質變化,以及對於其植食性昆蟲生長表現的影響。本試驗共分為兩章,在第一章中,探討了二氧化碳上升對於番茄(Lycopersicon esculentum Mill.)生長表現和其化學物質之影響,以及斜紋夜蛾(Spodoptera litura)幼蟲取食後生長發育之影響。試驗結果顯示,二氧化碳上升會使得番茄重量和葉面積顯著增加,但卻會降低番茄之氮含量;而取食高二氧化碳濃度處理後之番茄的斜紋夜蛾幼蟲,其相對生長速率會下降。除了二氧化碳外,有益微生物已被研究出可提升植物之生長表現,並改善植物之營養含量。而僅有極為少數的研究探討二氧化碳和叢枝菌根菌(arbuscular mycorrhizae)兩者之交互作用,對於植物以及昆蟲之影響。因此在本試驗之第二章,探討了二氧化碳上升與施加叢枝菌根菌,對於番茄生長之表現和化學物質之影響,以及其進一步對於斜紋夜蛾幼蟲生長表現之影響。試驗結果顯示,二氧化碳上升與叢枝菌根菌的施加,都會對於番茄之生長表現和葉片中化學物質之含量造成影響,而植物化學物質的改變亦會對昆蟲之生長表現造成影響。
URI: http://hdl.handle.net/11455/89101
其他識別: U0005-1307201516285800
Rights: 同意授權瀏覽/列印電子全文服務,2017-07-16起公開。
Appears in Collections:昆蟲學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102036019-1.pdf3.23 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.