Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89102
標題: A new record of Adelges (Hemiptera: Adelgidae) on Taiwan spruce and molecular phylogeny of aphids
臺灣雲杉之新紀錄球蚜 (半翅目:球蚜科) 及蚜蟲之分子系統發生
作者: 陳佳郁
Chia-Yu Chen
關鍵字: gallicola;body length;degree-days;maximum parsimony;Bayesian inference;癭蚜;體長;度日數;最大簡約;貝氏推論
引用: Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 215-222. Anonymous. 2011. SAS/STAT 9.3 User''s Guide. Cary, NC: SAS Institute Inc. Baker AC. 1920. Generic classification of the hemipterous family Aphididae. Washington, D. C.: US Department of Agriculture. 109 pp. Blackman RL, Eastop VF. 1994. Aphids on the world''s trees: an identification and information guide. Wallingford, Oxon, UK: CAB International. 1004 pp. Blackman RL, Eastop VF. 2000. Aphids on the World''s Crops: An Identification and Information Guide. 2nd ed. Chichester: John Wiley & Sons Ltd. 466 pp. Blackman RL, Eastop VF. 2007. Taxonomic issue. pp 1-29. In: van Emden HF, Hrrington R (eds). Aphids As Crop Pests CAB International. Bodare S, Stocks M, Yang JC, Lascoux M. 2013. Origin and demographic history of the endemic Taiwan spruce (Picea morrisonicola). Ecology and Evolution 3: 3320-3333. Borner C. 1930. Beitrage zu einem neuen System der Blattlause. Archiv fur klassifikatorische und phylogenetische Entomologie 1: 115-194. (in German) Buchner P. 1965. Endosymbiosis of Animals with Plant Microorganism. New York: Interscience Publishers. 909 pp. Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540-522. Chen CY, Chiu MC, Kuo MH. 2013. Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora. Bulletin of Entomological Research 103: 406-413. Clark MA, Moran NA, Baumann P, Wernegreen JJ. 2000. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54: 517-525. Coeur d''acier A, Jousselin E, Martin JF, Rasplus JY. 2007. Phylogeny of the Genus Aphis Linnaeus, 1758 (Homoptera: Aphididae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 42: 598-611. Coeur d''acier A, Cocuzza G, Jousselin E, Cavalieri V, Barbagallo S. 2008. Molecular phylogeny and systematic in the genus Brachycaudus (Homoptera: Aphididae): insights from a combined analysis of nuclear and mitochondrial genes. Zoologica Scripta 37: 175-193. Damos P, Savopoulou-Soultani M. 2012. Temperature-driven models for insect development and vital thermal requirements. Psyche [Internet]. 2012 2012: 1-13. Available from: doi: 10.1155/2012/123405 Darriba D, Taboada GL, Doallo R, Posada1 D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. Dixon AFG. 2005. Insect herbivore-host dynamics: tree-dwelling aphids. New York: Cambridge University Press. 194 pp. Foottit RG, Maw HEL, von Dohlen CD, Hebert PDN. 2008. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Molecular Ecology Resources 8: 1189-1201. Foottit RG, Maw EL, Havill NP, Ahern RG, Montgomery ME. 2009. DNA barcodes to identify species and explore diversity in the Adelgidae (Insecta: Hemiptera: Aphidoidea). Molecular Ecology Resources 9: 188-195. Fukatsu T, Ishikawa H. 1996. Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. Insect Biochemistry and Molecular Biology 26: 383-388. Fukatsu T, Nikoh N. 2000. Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insecta, Homoptera). Applied and Environmental Microbiology 66: 643-650. Funk DJ, Helbling L, Wernegreen JJ, Moran NA. 2000. Intraspecific phylogenetic congruence among multiple symbiont genomes. Proceedings: Biological Sciences 267: 2517-2521. Garcia-Mozoa H, Galana C, Gomez-Caseroa MT, Domingueza E. 2000. A comparative study of different temperature accumulation methods for predicting the start of the Quercus pollen season in Cordoba (South West Spain). Grana 39: 194-199. Hajibabaei M, deWaard JR, Ivanova NV, Ratnasingham S, Dooh RT, Kirk SL, Mackie PM, Hebert PDN. 2005. Critical factors for assembling a high volume of DNA barcodes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 360: 1959-1967. Hansen A, Moran NA. 2014. The impact of microbial symbionts on host plant utilization by herbivorous insects. Molecular Ecology 23: 1473-1496. Havill N, Montgomery M, Keena M. 2011. Hemlock woolly adelgid and its hemlock hosts: a global perspective. pp 3-14. In: Onken B, Reardon R (eds). Implementation and Status of Biological Control of the Hemlock Woolly Adelgid. U.S. Forest Service, Morgantown, West Virginia. Havill NP, Foottit RG. 2007. Biology and evolution of Adelgidae. Annual Review of Entomology 52: 325-349. Havill NP, Foottit RG, von Dohlen CD. 2007. Evolution of host specialization in the Adelgidae (Insecta: Hemiptera) inferred from molecular phylogenetics. Molecular Phylogenetics and Evolution 44: 357-370. Havill NP, Montgomery ME, Yu G, Shiyake S, Caccone A. 2006. Mitochondrial DNA from hemlock woolly adelgid (Hemiptera: Adelgidae) suggests cryptic speciation and pinpoints the source of the introduction to eastern North America. Annals of the Entomological Society of America 99: 195-203. Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003. Biological identifications through DNA barcodes. Proceedings: Biological Sciences 270: 313-321. Heie OE. 1980. The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. I. General Part. The Families Mindaridae, Hormaphididae, Thelaxidae, Anoeciidae, and Pemphigidae. Klampenborg: Scandinavian Science Press. 236 pp. Heie OE. 1987. Palaeontology and phylogeny. pp 123-129. In: Ninks AK, Harrewijn P (eds). Aphids: Their Biology, Natural Enemies and Control. Volume A. Elsevier, Amsterdam. Heie OE, Wegierek P. 2009. A classification of the Aphidomorpha (Hemiptera: Sternorrhyncha) under consideration of the fossil taxa. Redia 92: 69-77. (in Abstract) Herms DA. 2007. Using degree-days and plant phenology to predict pest activity. pp 49-59. In: Krischik V, Davidson J (eds). IPM (Integrated Pest Management) of Midwest Landscapes. Department of Entomology, University of Minnesota, St. Paul, Minnesota. Hsu CK, Lu KC, Ou CH. 2000. Studies on the vegetation along the trail to the peak of Mt. Hsuen in Wuling region. Journal of National Park 10: 66-72. (in Chinese) Hsu KM, Tsai JL, Chen MY. 2010. Phylogenetic Relationship of the Genus Dioscorea L. (Dioscoreaceae) of Taiwan. Taiwan Journal of Biodiversity 12: 291-302. (in Chinese) Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. Ishikawa H. 1982. Host symbiont interactions in the protein synthesis in the pea aphid, Acyrthosiphon pisum. Insect Biochemistry 12: 613-622. Ishikawa H. 2003. Insect symbiosis: an introduction. pp 1-21. In: Bourtzis K, Miller TA (eds). Insect Symbiosis. CRC Press, Boca Raton. Knudsen B, Knudsen T, Flensborg M, Sandmann H, Heltzen M, Andersen A, Dickenson M, Bardram J, Steffensen PJ, Monsted S, Lauritzen T, Forsberg R, Thanbichler A, Bendtsen JD, Gorlitz L, Rasmussen J, Tordrup D, Vaerum M, Ravn MN, Hachenberg C, Fisker E, Dekker P, de Meza J, Hein AMK, Sinding JB, Quorning J, Hvam K, Mikkelsen S, Liboriussen P, Grydholt J, Handberg H, Bundgaard M, Joecker A, Simonsen M, Nielsen PRL, Joecker A, Fleischer P, Jakobsen J, Juul S, Appelt U, Fejes A. 2008. CLC DNA Workbench 6.6.1 (http://www.clcbio.com). Lee W, Kim H, Lee S. 2011a. A new aphid genus Neoaulacorthum (Hemiptera: Aphididae: Macrosiphini), determined by molecular and morphometric analyses. Bulletin of Entomological Research 101: 115-123. Lee W, Kim H, Lim J, Choi HR, Kim Y, Kim YS, Ji JY, Foottit RG, Lee S. 2011b. Barcoding aphids (Hemiptera: Aphididae) of the Korean Peninsula: updating the global data set. Molecular Ecology Resources 11: 32-37. Linnaeus C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. 10 (reformata) ed. Holmiae: impensis Laurentii Salvii. 824 pp. (in Latin) Liu LIN, Huang X, Zhang R, Jiang L, Qiao G. 2013. Phylogenetic congruence between Mollitrichosiphum (Aphididae: Greenideinae) and Buchnera indicates insect–bacteria parallel evolution. Systematic Entomology 38: 81-92. Lozier JD, Roderick GK, Mills NJ. 2007. Genetic evidence from mitochondrial, nuclear, and endosymbiont markers for the evolution of host plant associated species in the aphid genus Hyalopterus (Hemiptera: Aphididae). Evolution 61: 1353-1367. Martinez-Torres D, Buades C, Latorre A, Moya A. 2001. Molecular systematics of aphids and their primary endosymbionts. Molecular Phylogenetics and Evolution 20: 437-449. McClure MS. 2001. Biological control of hemlock woolly adelgid in the eastern United States. Morgantown, West Virginia: USDA Forest Service, Forest Health Technology Enterprise Team. 1-10 pp. McKinnon ML, Quiring DT, Bauce E. 1999. Influence of tree growth rate, shoot size and foliar chemistry on the abundance and performance of a galling adelgid. Functional Ecology 13: 859-867. Moran NA, Munson MA, Baumann P, Ishikawa H. 1993. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proceedings: Biological Sciences 253: 167-171. Nakabachi A, Ishikawa H. 1999. Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. Journal of Insect Physiology 45: 1-6. Novakova E, Hypsa V, Klein J, Foottit RG, von Dohlen CD, Moran NA. 2013. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Molecular Phylogenetics and Evolution 68: 42-54. Ogawa K, Miura T. 2014. Aphid polyphenisms: trans-generational developmental regulation through viviparity. Frontiers in Physiology [Internet]. 2014 5: 1-11. Available from: doi: 10.3389/fphys.2014.00001 Ortiz-Rivas B, Martinez-Torres D. 2010. Combination of molecular data support the existence of three main lineages in the phylogeny of aphids (Hemiptera: Aphididae) and the basal position of the subfamily Lachninae. Molecular Phylogenetics and Evolution 55: 305-317. Ortiz-Rivas B, Moya A, Martinez-Torres D. 2004. Molecular systematics of aphids (Homoptera: Aphididae): new insights from the long-wavelength opsin gene. Molecular Phylogenetics and Evolution 24: 24-37. Ou CH, Lu KC, Lin HC. 2003. Study on the vegetation ecology of the Mt. Ta-Shei region. Journal of National Park 13: 33-61. (in Chinese) Ozaki K. 1993. Effects of gall volume on survival and fecundity of gall-making aphids Adelges japonicus (Homoptera: Adelgidae). Researches on Population Ecology 35: 273-284. Ozaki K. 1998. Inter-specific difference in budburst time and its consequences on egg hatch time and survival of the gall-making adelgid Adelges japonicus (Monzen) (Hom., Adelgidae). Journal of Applied Entomology 122: 483-486. Ozaki K. 2000. Insect-plant interactions among gall size determinants of adelgids. Ecological Entomology 25: 452-459. Paradis A, Elkinton J, Hayhoe K, Buonaccorsi J. 2008. Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America. Mitigation and Adaptation Strategies for Global Change 13: 541-554. Pruess KP. 1983. Day-degree methods for pest management. Environmental Entomology 12: 613-619. Rebijith KB, Asokan R, Kumar NKK, Krishna V, Chaitanya BN, Ramamurthy VV. 2013. DNA barcoding and elucidation of cryptic aphid species (Hemiptera: Aphididae) in India. Bulletin of Entomological Research 103: 601-610. Remaudiere G, Remaudiere M. 1997. Catalogue des Aphididae du Monde. Paris: Institut National de la Recherche Agronomique. 473 pp. (in French) Ren Z, Zhong Y, Kurosu U, Aoki S, Ma E, von Dohlen CD, Wen J. 2013. Historical biogeography of Eastern Asian–Eastern North American disjunct Melaphidina aphids (Hemiptera: Aphididae: Eriosomatinae) on Rhus hosts (Anacardiaceae). Molecular Phylogenetics and Evolution 69: 1146-1158. Rohfritsch O, Anthony M. 1992. Strategies in gall induction by two groups of Homopterans. pp 102-117. In: Shorthouse JD, Rohfritsch O (eds). Biology of Insect-Induced Galls. Oxford University Press, New York. Roltsch WJ, Zalom FG, Strawn AJ, Strand JF, Pitcairn MJ. 1999. Evaluation of several degree-day estimation methods in California climates. International Journal of Biometeorology 42: 169-176. Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. Salom SM, Sharov AA, Mays WT, Gray DR. 2002. Influence of temperature on development of hemlock woolly adelgid (Homoptera: Adelgidae) progrediens. Journal of Entomological Science 37: 166-1176. Sandstrom JP, Russell JA, White JP, Moran NA. 2001. Independent origins and horizontal transfer of bacterial symbionts of aphids. Molecular Ecology 10: 217-228. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74: 5463-5467. Sano M, Tabuchi K, Ozaki K. 2008. A holocyclic life cycle in a gall-forming adelgid, Adelges japonicus (Homoptera: Adelgidae). Journal of Applied Entomology 132: 557-565. Sano M, Havill NP, Ozaki K. 2011. Taxonomic identity of a galling adelgid (Hemiptera: Adelgidae) from three spruce species in Central Japan. Entomological Science 14: 94-99. Seaver D, Strand J, Strawn AJ. 1990. Degree-day utility user''s guide. 2nd ed. Davis, California: University of California Statewide Integrated Pest Management Program. 61 pp. Shen CC. 2006. Phylogenetic relationships of pysllids based on mitochondrial COI gene and primary endosymbionts 16S rDNA [Master''s thesis]. Taichung, Taiwan: National Chung Hsing University. 71 pp. (in Chinese) Shingleton AW, Stern DL. 2003. Molecular phylogenetic evidence for multiple gains or losses of ant mutualism within the aphid genus Chaitophorus. Molecular Phylogenetics and Evolution 26: 26-35. Sopow SL, Quiring DT. 2001. Is gall size a good indicator of adelgid fitness? Entomologia Experimentalis et Applicata 99: 267-271. Stechmann A, Schlegel M. 1999. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes. Proceedings: Biological Sciences 266: 2043-2052. Stern DL. 1994. A phylogenetic analysis of soldier evolution in the aphid family Hormaphididae. Proceedings: Biological Sciences 256: 203-209. Swofford DL. 2003. PAUP* 4.0: phylogenetic analysis using parsimony (and other methods). Ver. 4.0b10. Sunderland, MA, USA: Sinauer Associates. Tabuchi K, Sano M, Ozaki K. 2009. Delayed larval development without summer diapause in a galling adelgid (Hemiptera: Adelgidae). Annals of the Entomological Society of America 102: 456-461. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729. Tao CC. 1990. Aphid-Fauna of Taiwan Province, China. Taipei: Taiwan Provincial Museum. 327 pp. (in Traditional Chinese) Tao CC. 1999. List of Aphidoidea (Homoptera) of China. Taichung, Taiwan. R.O.C.: Taiwan Agricultural Research Institute. 144 pp. Toenshoff ER, Gruber D, Horn M. 2012a. Co-evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts. Environmental Microbiology 14: 1284-1295. Toenshoff ER, Szabo G, Gruberb D, Horna M. 2014. The pine bark adelgid, Pineus strobi, contains two novel bacteriocyte-associated gammaproteobacterial symbionts. Applied and Environmental Microbiology 80: 878-885. Toenshoff ER, Penz T, Narzt T, Collingro A, Schmitz-Esser S, Pfeiffer S, Klepal W, Wagner M, Weinmaier T, Rattei T, Horn M. 2012b. Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae). The ISME Journal 6: 384-396. Tu X, Li Z, Wang J, Huang X, Yang J, Fan C, Wu H, Wang Q, Zhang Z. 2014. Improving the degree-day model for forecasting Locusta migratoria manilensis (Meyen) (Orthoptera: Acridoidea). PLoS ONE [Internet]. 2014 9 (3): 1-12. Available from: doi: 10.1371/journal.pone.0089523 von Dohlen CD, Moran NA. 2000. Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation. Biological Journal of the Linnean Society of London 71: 689-717. von Dohlen CD, Kurosu U, Aoki S. 2002. Phylogenetics and evolution of the eastern Asian-eastern North American disjunct aphid tribe, Hormaphidini (Hemiptera: Aphididae). Molecular Phylogenetics and Evolution 23: 257-267. von Dohlen CD, Rowe CA, Heie OE. 2006. A test of morphological hypotheses for tribal and subtribal relationships of Aphidinae (Insecta: Hemiptera: Aphididae) using DNA sequences. Molecular Phylogenetics and Evolution 38: 316-329. von Dohlen CD, Spaulding U, Shields K, Havill NP, Rosa C, Hoover K. 2013. Diversity of proteobacterial endosymbionts in hemlock woolly adelgid (Adelges tsugae) (Hemiptera:Adelgidae) from its native and introduced range. Environmental Microbiology 15: 2043-2062. Wallace MS. 2005. A historical review of adelgid nomenclature. In: Onken B, Reardon R (eds). Proceedings of the 3rd symposium on hemlock woolly adelgid in the eastern United States. Morgantown, West Virginia: USDA Forest Service, Forest Health Technology Enterprise Team. pp 6-14. Yao I. 2014. Costs and constraints in aphid-ant mutualism. Ecological Research 29: 383-391. Zalom FG, Goodell PB, Wilson LT, Bamett WW, Bentley WJ. 1983. Degree-days: the calculation and use of heat units in pest management. Berkeley, California: University of California Division of Agriculture and Natural Resources DANR Leaflet 21373. 10 pp. Zhang GX, Chen XL, Qiao GX, Zhong TS, Li JH. 1999. Fauna of Agricultural and Forestry Aphids of Northwest, China (Insecta, Homoptera, Aphidinea). Beijing: China Environmental Science Press. 563 pp. (in Simplified Chinese) Zhang HC, Qiao GX. 2006. Application of gene sequences in molecular phylogenetic study on Aphididae (Hemiptera). Acta Entomologica Sinica 49: 521-527. (in Simplified Chinese) Zurovcova M, Havelka J, Stary P, Vechtova P, Chundelova D, Jarosova A, Kucerova L. 2010. 'DNA barcoding' is of limited value for identifying adelgids (Hemiptera: Adelgidae) but supports traditional morphological taxonomy. European Journal of Entomology 107: 147-156.
摘要: 
The three families of aphids (Hemiptera: Sternorrhyncha: Aphidoidea) from Taiwan are divided into 11 subfamilies. This study discovered the new records of Adelges (Adelgidae) on Taiwan spruce, Picea morrisonicola. Adelges tsugae inducing round galls were holocyclic with host alternation, and the other new species, Adelges sp., inducing pineapple galls maybe anholocyclic and without host alternation in different life history strategies. The Metabolic Theory of Ecology states that temperature and body size are the basic determinants of an organism''s metabolic rate. The effect of these determinants on individual development and fecundity, population growth, species diversity, and even on the ecosystem are important. We periodically collected pineapple galls in random on Taiwan spruce during 2007 to 2009. Adelges sp. had the phenomenon of periodic occurrence in the Wuling region. In order to elucidate the effect of temperature on the development of adelgid in pineapple gall, we estimated the accumulated temperature of the gallicola developmental period using three years of meteorological data for Wuling. The accumulated temperature and the particular year are the two variables that taken into consideration in multiple regression analysis to determine their effect on the development of gallicola. The best model revealed that the year variable had no effect, and that body length was positively correlated with the accumulated temperature (y = – 0.25368 + 0.00078x, p = 0.002, R2 = 0.8774). Nevertheless, the accumulated temperature + particular year model was also significant (p = 0.0083, R2 = 0.8874), and the gallicola body size was larger in 2009, due to a higher accumulated degree-day. We predict that a moderately rising temperature will be advantageous to the gallicola of Adelges sp. in both development and fecundity. Therefore, forest and natural resource managers should be aware that endemic Taiwan spruce will potentially face a growing threat by the adelgid. Taiwan is located on subtropical and tropical regions. Global climate change may have an impact on speciation, which cannot be underestimated. We further presented the higher-level phylogenetic relationships among 6 subfamilies and 33 species, excluding the outgroup Adelges tsugae (Adelgidae), using a combined molecular dataset (16S ribosome DNA of Buchnera aphidicola, DNA Barcoding cytochrome oxidase I and downstream, cytochrome oxidase II, elongation factor 1-α sequences). The maximum parsimony and Bayesian inference analysis revealed that the higher-level relationships among Aphididae were different from previous morphological or molecular classifications. Drepanosiphinae are on the basal clade, rather than in the monophyletic group with Aphidinae. Analyses supported the monophyly of Aphidini and its subtribes, Aphidina and Rhopalosiphina. Macrosiphini were also monophyletic. Our findings of the relative relationship of Aulacorthum nipponicum and Acyrthosiphon spp. on our phylogenetic trees, supports moving Au. nipponicum from Aulacorthum to the new genus Neoaulacorthum.

蚜蟲隸屬於半翅目 (Hemiptera) 胸喙亞目 (Sternorrhyncha) 常蚜總科 (Aphidoidea),目前臺灣有 3 科 11 亞科的蚜蟲。本研究發現球蚜科球蚜屬 (Adelges) 為害臺灣雲杉 (Picea morrisonicola) 之新紀錄,有兩種不同生活史策略之球蚜,造球形蟲癭的鐵杉球蚜 (Adelges tsugae) 為轉換寄主的完全生活環、另一造鳳梨形蟲癭的新種球蚜 (Adelges sp.) 可能為不轉換寄主的不完全生活環。溫度及體型大小在生態學代謝理論 (Metabolic Theory of Ecology) 中是決定生物代謝速率的基本因素,這些因素對個體的生長發育和繁殖、族群增長、物種多樣性,甚至對生態系過程的影響很是重要。Adelges sp.在武陵地區具週期性發生之現象,本研究在武陵地區週期性隨機採集臺灣雲杉上鳳梨形蟲癭為時三年,為了解溫度對鳳梨形蟲癭內球蚜發育的影響,利用武陵氣象資料估算出此球蚜的癭蚜發育期的積溫,來進行積溫及年份對癭蚜發育的影響之迴歸分析,最佳模型結果為年份變數無影響,積溫 (x) 與癭蚜體長 (y) 為正相關,迴歸方程式為y = – 0.25368 + 0.00078x (p = 0.002, R2 = 0.8774)。然而積溫+年份的複迴歸方程式亦成立 (p = 0.0083, R2 = 0.8874),2009 年的累積度日數增加且癭蚜體長較 2007 年為大,故推測氣溫若上升則可能有利Adelges sp.癭蚜的發育及繁殖。因此,森林及自然資源管理者應不容忽視本土臺灣雲杉受到球蚜的潛在危害。另外,臺灣位屬亞熱帶及熱帶地區,近年全球氣候變遷甚鉅,對種化的影響不容小覷。本研究進一步取樣常蚜科 (Aphididae) 6 亞科 33 種蚜蟲,外群為球蚜科 (Adelgidae) 之鐵杉球蚜,利用四段分子特徵分別為蚜蟲初級內共生菌Buchnera aphidicola之 16S rDNA、蚜蟲粒線體COI (包含上游基因條碼及下游)、COII及蚜蟲核基因EF1-α,建構系統發生樹以釐清其高階親緣關係。最大簡約及貝氏系統發生分析顯示亞科級的分群與前人以形態或分子特徵之研究明顯不同,斑蚜亞科 (Drepanosiphinae) 位於系統樹之基部,而非與常蚜亞科 (Aphidinae) 位於末端的單系群內。常蚜亞科之分群結果為支持常蚜族 (Aphidini) 及其亞族 (常蚜亞族 (Aphidina) 及縊管蚜亞族 (Rhophlosiphina)) 之單系群關係,且網管蚜族 (或稱長管蚜族、Macrosiphini) 亦為單系群,與形態特徵結果一致。根據雞屎藤蚜 (Aulacorthum nipponicum) 與光額蚜屬 (Acyrthosiphon) 在系統樹上之相對關係,支持將雞屎藤蚜由粗額蚜屬 (Aulacorthum) 移至新粗額蚜屬 (Neoaulacorthum)。
URI: http://hdl.handle.net/11455/89102
其他識別: U0005-2811201416195147
Rights: 同意授權瀏覽/列印電子全文服務,2015-08-31起公開。
Appears in Collections:昆蟲學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-8094036004-1.pdf8.93 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.