Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89112
標題: Preliminary study on the regulation of cecropin gene expression in Armigeres subalbatus
利用白腹叢蚊進行抗微生物胜肽cecropin基因表現調控初探
作者: 蘇永倫
Yung-Luen Su
關鍵字: cecropin;白腹叢蚊;抗微生物胜肽
引用: Adelman, Z.N., Jasinskiene, N., James, A.A. 2002. Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Mol. Biochem. Parasitol. 121: 1-10. Asling, B., Dushay, M.S., Hultmark, D. 1995. Identification of early genes in the Drosophila immune response by PCR-based differential display: the attacin A gene and the evolution of attacin-like proteins. Insect Biochem. Mol. Biol. 25: 511-518. Bechinger, B. 1997. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156: 197-211. Boman, H.G., Faye, I., Gudmundaaon, G.H., Lee, J.Y., Lidholm, D.A. 1991. Cell-free immunity in Cecropia. Amodel system for antibacterial proteins. Eur. J. Biochem. 201: 23-31. Bulet, P., Stӧcklin, R., Menin, L. 2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198: 169-184. Bulet, P., Dimarcq, J.L., Hetru, C., Lagueux, M., Charlet, M., Hegy, G., Van Dorsselaer, A., Hoffmann, J.A. 1993. A novel inducible antibacterial peptide of Drosophila carries an o-glycosylated substitution. J. Biol. Chem. 268: 14893-14897. Bulet, P., Cociancich, S., Dimarcq, J.L., Lambert, J., Reichhart, J.M., Hoffmann, D., Hetru, C., Hoffmann, J.A. 1991. Insect immunity. Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new member of the insect defensin family. J. Biol. Chem. 266: 224520-24525. Busse, M.S., Arnold, C.P., Towb, P., Katrivesis, J., Wasserman, S.A. 2007. A κB sequence code for pathway-specific innate immune responses. EMBO J. 26: 3826-3835. Casteels, P., Ampe, C., Riviere, L., Van Damme, J., Elicone, C., Fleming, M., Jacobs, F., Tempst, P. 1990. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187: 381-386. Casteels, P., Romagnolo, J., Castle, M., Casteels-Josson, K., Erdjument-Bromage, H., Tempst, P. 1994. Biodiversity of apidaecin-type peptide antibiotics. prospects of manipulating the antibacterial spectrum and combating acquired resistance. J. Biol. Chem. 269: 26107-26115. Chalk, R., Townson, H., Natori, S., Desmond, H., Ham, P.J. 1994. Purification of an insect defensing from the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 24: 403-410. Chang, W.C. 2012. Induced transcription of cecropin B1 and cecropin A2 gene in Armigeres subalbatus. Master's Thesis, Department of Entomology, National Chung Hsing University, Taichung. 80 pp. Charlet, M., Lagueux, M., Reichhart, J.M., Hoffmann, D., Braun, A., Meister, M. 1996. Cloning of the gene encoding the antibacterial peptide drosocin involved in Drosophila immunity. Expression studies during the immune response. Eur. J. Biochem. 241: 699-706. Chen, W.J., Dong, C.F., Chiou, L.Y., Chuang, W.L. 2000. Potential role of Armigeres subalbatus (Diptera: Culicidae) in the transmission of Japanese encephalitis virus in the absence of rice culture on Liu-chiu islet, Taiwan. J. Med. Entomol. 37: 108-113. Cheng, H.C. 2005. Infection and transmission of dengue virus in the mosquito, Armigeres subalbatus. Master's Thesis, Department of Entomology, National Chung Hsing University, Taichung. 61 pp. Cheng, G., Liu, L., Wang, P., Zhang, Y., Zhao, Y.O., Colpitts, T.M., Feitosa, F., Anderson, J.F., Fikrig, E. 2011. An in vivo transfection approach elucidates a role for Aedes aegypti thioester-containing proteins in flaviviral infection. PLoS ONE 6: e22786. Christophides, G.K., Zdobnov, E., Barillas-Mury, C., Birney, E., Blandin, S., Blass, C., Brey, P.T., Collins, F.H., Danielli, A., Dimopoulos, G., Hetru, C., Hoa, N.T., Hoffmann, J.A., Kanzok, S.M., Letunic, I., Levashina, E.A., Loukeris, T.G., Lycett, G., Meister, S., Michel, K., Moita, L.F., Muller, H.M., Osta, M.A., Paskewitz, S.M., Reichhart, J.M., Rzhetsky, A., Troxler, L., Vernick, K.D., Vlachou, D., Volz, J., von Mering, C., Xu, J., Zheng, L., Bork, P., Kafatos, F.C. 2002. Immunity-related genes and gene families in Anopheles gambiae. Science 298: 159-165. Cociancich, S., Dupont, A., Hegy, G., Lanot, R.,, Holder, F., Hetru, C., Hoffmann, J.A. 1994. Novel inducible antibacterial peptide from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem. J. 300: 567-575. Cornet, B., Bonmatin, J.M., Hetru, C., Hoffmann, J.A., Ptak, M., Vovelle, F. 1995. Refined three-dimensional solution structure of insect defensin A. Structure 3: 435-448. Danialou, G., Comtois, A.S., Matecki, S., Nalbantoglu, J., Karpati, G., Gilbert, R., Geoffroy, P., Gilligan, S., Tanguay, J.F., Petrof, B. 2004. Optimization of regional intraarterial naked DNA-mediated transgene delivery to skeletal muscles in a large animal model. Mol. Ther. 11: 257-266. DeLucca, A.J., Bland, J.M., Jacks, T.J., Grimm, C., Cleveland, T.E., Walsh, T.J. 1997. Fungicidal activity of cecropin A. Antimicrob. Agents Chemother. 41:481-483. Dimarcq, J.L., Hoffmann, D., Meister, M., Bulet, P., Lanot, R., Reichhart, J.M., Hoffmann, J.A. 1994. Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur. J. Biochem. 221: 201-209. Dissanaike, A.S., Abeyewickreme, W., Wijesundera, M.D., Weerasooriya, M.V., Ismail, M.M. 1997. Human dirofilariasis caused by Dirofilaria (Nochtiella) repens in Sri Lanka. Parassitologia 39: 375-382. Dushay, M.S., Asling, B., Hultmark, D. 1996. Origins of immunity: Relish, a compound Rel- like gene in the antibacterial defense of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 93: 10343-10347. Eckert, R. 2011. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 6: 635-651. Engstrӧm, Y., Kadalayil, L., Sun, S.C., Samakovlis, C., Hultmark, D. 1993. kappa B-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 232: 327-333. Fallon, A.M., Sun, D. 2001. Exploration of mosquito immunity using cells in culture. Insect Biochem. Mol. Biol. 31: 263-278. Fehlbaum, P., Bulet, P., Michaut, L., Lagueux, M., Broekaert, W.F., Hetru, C., Hoffmann, J.A. 1994. Insect immunity: septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269: 33159-33163. Fox, M.A., Thwaite, J.E., Ulaeto, D.O., Atkins, T.P., Atkins, H.S. 2012. Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II. Peptides 33: 197-205. Georgel, P., Kappler, C., Langley, E., Gross, I., Nicolas, E., Reichhart, J.M., Hoffmann, J.A. 1995. Drosophila immunity. A sequence homologous to mammalian interferon consensus response element enhances the activity of the diptericin promoter. Nucleic Acids Res. 23: 1140-1145. Hillyer, J.F., Schmidt, S.L., Christensen, B.M. 2003. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res. 313: 117-127. Hillyer, J.F. 2010. Mosquito immunity. Adv. Exp. Med. Biol. 708: 218-238. Hoffmann, J.A. 1995. Innate immunity of insects. Curr. Opin. Immunol. 7: 4-10. Hoffmann, J.A. 2003. The immune response of Drosophila. Nature 426: 33-38. Hultmark, D., Steiner, H., Rasmuson, T., Boman, H.G. 1980. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106: 7-16. Imler, J.L. 2013. Overview of Drosophila immunity: a historical perspective. Dep. Comp. Immunol. 42: 3-15. Isoe, J., Kunz, S., Manhart, C., Wells, M.A., Miesfeld, R.L. 2007. Regulated expression of microinjected DNA in adult Aedes aegypti mosquitoes. Insect Mol. Biol. 16: 83-92. Kadalayil, L., Petersen, U.M., Engstrӧm, Y. 1997. Adjacent GATA and κB-like motifs regulate the expression of a Drosophila immune gene. Nucleic Acids Res. 25: 1233-1239. Klowden, M.J. 2007. Circulatory systems. pp 357-401. Physiological systems in insect, second edition. Elsevier, New York. Kokoza, V., Ahmed, A., Shin, S.W., Okafor, N., Zou, Z., Raikhel, A.S. 2009. Blocking of Plasmodium transmission by cooperative action of cecropin A and defensin A in transgenic Aedes aegypti mosquitoes. Proc. Natl. Acad. Sci. U.S.A. 107: 8111-8116. Kylsten, P., Samakovlis, P., Hultmark, D. 1990. The cecropin locus in Drosophila: compact gene cluster involved in the response to infection. EMBO J. 9: 217-114. Lambert, J., Keppi, E., Dimarcq, J.L., Wicker, C., Reichhart, J.M., Dunbar, B., Lepage, P., Van Dorsselaer, A., Hoffmann, J.A., Fothergill, J., Hoffmann, D. 1989. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci. U. S. A. 86: 262-266. Lee, E., Jeong, K.W., Lee, J., Shin, A., Kim, J.K., Lee, J., Lee, J., Lee, D.G., Kim, Y. 2013. Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. BMB Rep 46: 282-287. Lee, J.Y., Boman, A., Sun, C.X., Andersson, M., Jӧrnvall, H., Mutt, V., Boman, H.G. 1989. Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. U.S.A. 86: 9159-9162. Lemaitre, B., Hoffmann, J.A. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25: 697-743. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., Hoffmann, J.A. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983. Levashina, E.A. 2004. Immune responses in Anopheles gambiae. Insect Biochem. Mol. Biol. 34: 673-678. Levashina, E.A., Ohresser, S., Bulet, P., Reichhart, J.M., Hetru, C., Hoffmann, J.A. 1995. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233: 694-700. Li, B., Wu, H.Y., Qian, X.P., Li, Y., Chen, W.F. 2003. Expression, purification and serological analysis of hepatocellular carcinoma associated antigen HCA587 in insect cells. World J. Gastroenterol. 9: 678-682. Lowenberger, C., Bulet, P., Charlet, M., Hetru, C., Hodgeman, B., Christensen, B.M., Hoffmann, J.A. 1995. Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 25: 867-873. Lowenberger, C., Charlet, M., Vizioli, J., Kamal, S., Richman, A., Christensen, B.M., Bulet, P. 1999. Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J. Biol. Chem. 247: 20092-20097. Lu, A., Zhang, Q., Zhang, J., Yang, B., Wu, K., Xie, W., Luan, Y.X., Ling, E. 2014. Insect prophenoloxidase: the view beyond immunity. Front Physiol 5: 1-15. Meredith, J.M., Munks, R.J.L., Grail, W., Hurd, H., Eggleston, P., Lehane, M.J. 2006. A novel association between clustered NF-κB and C/EBP binding sites is required for immune regulation of mosquito defensing genes. Insect Mol. Biol. 15: 393-401. Mizutani, T., Mizutani, T., Kobayashi, M., Eshita, Y., Shirato, K., Kimura, T., Ako, Y., Miyoshi, H., Takasaki, T., Kurane, I., Kariwa, H., Umemura, T., Takashima, I. 2003. Involement of the JNK-like protein of the Aedes albopictus mosquito cell line, C6/36, in phagocytosis, endocytosis and infection of West Nile virus. Insect Mol. Biol. 12: 491-499. Moon, A.E., Walker, A.J., Goodbourn, S. 2011. Regulation of transcription of the Aedes albopictus cecropin A1 gene: A role for p38 mitogen-activated protein kinase. Insect Biochem. Mol. Biol. 41: 628-636. Moore, A.J., Beazley, W.D., Bibby, M.C., Devine, D.A. 1996. Antimicrobial activity of cecropin. J. Antimicrob. Chemother. 37: 1077-1089. Morisato, D., Anderson, K.V. 1995. Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu. Rev. Genet. 29: 371–399. Osada, S., Yamamoto, H., Nishihara, T., Imagawa, M. 1996. DNA binding specificity of the CCAAT/enhancer-binding protein transcription factior family. J. Biol. Chem. 271: 3891-3896. Osta, M.A., Christophides, G.K., Vlachou, D., Kafatos, F.C. 2004. Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J. Exp. Biol. 207: 2551-2563. Peng, R., Maklokova, V.I., Chandrashekhar, J.H., Lan, Q. 2011. in vivo functional genomic studies of sterol carrier protein-2 gene in yellow fever mosquito. PLoS ONE 6: e18030. Petersen, U.M., Bjorklund, G., Ip, Y.T., Engstrom, Y. 1995. The dorsal-related immunity factor, Dif, is a sequence-specific trans-activator of Drosophila cecropin gene expression. EMBO J. 14: 3146-3158. Petersen, U.M., Kadalayil, L., Rehorn, K.P., Hoshizaki, D.K., Reuter, R., Engstrom, Y. 1999. Serpent regulates Drosophila immunity grnrs in the larval fat body through an essential GATA motif. EMBO J. 18: 4013-4022. Plunkett, R.M., Murray, S.I., Lowenberger, A. 2009. Generation and characterization of the antibacterial activity of a novel hybrid antimicrobial peptide comprising functional domains from different insect cecropins. Can. J. Microbiol. 55: 520-528. Qu, X.M., Steiner, H., Engstrӧm, A., Bennich, H., Boman, H.G. 1982. Insect immunity: isolation and structure of cecropins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi. Eur. J. Biochem. 127: 219-224. Richman, A.M., Bulet, P., Hetru, C., Barillas-Mury, C., Hoffmann, J.A., Kafalos, F.C. 1996. Inducible immune factor of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA. Insect Mol. Biol. 5: 203-210. Rutschmann, S., Jung, A.C., Hetru, C., Reichhart, J.M., Hoffmann, J.A., Ferrandon, D. 2000. The Rel protein DIF mediates the antifungal but not the antibacterisl host defense in Drosophila. Immunity 12: 569-580. Saito, A., Ueda, K., Imamura, M., Atsumi, S., Tabunoki, H., Miura, N., Watanabe, A., Kitami, M., Sato, R. 2005. Purification and cDNA cloning of a cecropin from the longicorn beetle, Acalolepta luxuriosa. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 142: 317-323. Salomone, F., Cardarelli, F., Di Luca, M., Boccardi, C., Nifosi, R., Bardi, G., Di Bari, L., Serresi, M., Beltram, F. 2012. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. J Control Release 163: 293-303. Sanchez-Vargas, I., Travanty, E.A., Keene, K.M., Franz, A.W., Beaty, B.J., Blair, C.D., Olson, K.E. 2004. RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res. 102: 65-74. Senger, K., Harris, K., Levine, M. 2006. GATA factors participate in tissue-specific immune responses in Drosophila larvae. Proc. Natl. Acad. Sci. U.S.A. 103: 15957-15962. Shin, S.W., Kokoza, V., Bian, G., Cheon, H.M., Kim, Y.J., Raikhel, A.S. 2005. REL1, a homologue of Drosophila Dorsal, regulates Toll antifungal immune pathway in the female mosquito Aedes aegypti. J. Biol. Chem. 280: 16499-16507. Sun, D., Eccleston, E.D., Fallon, A.M. 1998. Peptide sequence of an antibiotic cecropin from the vector mosquito, Aedes albopictus. Biochem. Biophys. Res. Commun. 249: 410-415. Sun, D., Fallon, A.M. 2002. Characterization of genomic DNA encoding cecropins from Aedes albopictus mosquito cell line. Insect Mol. Biol. 11: 21-30. Tingvall, T.Ӧ., Roos, E., Engstrӧm, Y. 2001. The GATA factor serpent is required for the onset of the humoral immune response in Drosophila embryos. Proc. Natl. Acad. Sci. U.S.A. 98: 3884-3888. Tsao, I.Y., Lin, U.S., Christensen B.M., Chen, C.C. 2009. Armigeres subalbatus prophenoloxidase III: Cloning, characterization and potential role in morphogenesis. Insect Biochem. Mol. Biol. 39: 96-104. Uvell, H., Engstrӧm, Y. 2003. Functional characterization of a novel promoter element required for an innate immune response in Drosophila. Mol. Cell. Biol. 23: 8272-8281. Vizioli, J., Bulet, P., Charlet, M., Lowenberger, C., Blass, C., Muller, H.M., Dimopoulos, G., Hoffman, J., Kafatos, F.C., Richman, A. 2000. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol. Biol. 9: 75-84. Vizioli, J., Bulet, P., Hoffmann, J.A., Kafatos, F.C., Muller, H.M., Dimopoulos, G. 2001. Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. U.S.A. 98: 12630-12635. Wicker, C., Reichhart, J.M., Hoffmann, D., Hultmark, D., Samakovlis, C., Hoffmann, J.A. 1990. Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J. Biol. Chem. 265: 22493-22498. Willams, M.J. 2007. Drosophila hemopoiesis and cellular immunity. J. Immunol. 178: 4711-4715. Yamano, Y., Matsumoto, M., Sasahara, K., Sakamoto, E., Morishima, I. 1998. Structure of genes for cecropin A and inducible nuclear protein that binds to the promoter region of the genes from the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 62: 237-241. Zhang, Y., Schlachetzki, F., Li, J.Y., Boado, R.J., Pardridge, W.M. 2003. Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol. Vis. 9: 465-472. Zhang, Z., Palli, S.R. 2009. Identification of a cis-regulatory element required for 20-hydroxyecdysone enhancement of antimicrobial peptide gene expression in Drosophila melanogaster. Insect Mol. Biol. 18: 595-605. Zheng, X.L., Zheng, A.L. 2002. Genomic organization and regulation of three cecropin genes in Anopheles gambiae. Insect Mol. Biol. 11: 517-525.
摘要: 
本論文利用白腹叢蚊(Armigeres subalbatus)進行抗微生物胜肽cecropin基因表現調控的研究,選殖總計長度1939 bp之白腹叢蚊cecropin A2轉錄單位前之五端序列,並將該1939 bp五端序列片段截切,利用pGL4.10[luc2]報導基因載體構築成1939 CecA2-pGL4、1609 CecA2-pGL4與1184 CecA2-pGL4質體。將這些質體轉染於C6/36細胞中並以大腸桿菌(Escherichia coli)與金黃色葡萄球菌(Staphylococcus aureus)進行luciferase基因表現誘導作用。在大腸桿菌的誘導處理組,以1609 CecA2-pGL4質體的RNA偵測量達對照組的4.948倍為最高;而於金黃色葡萄球菌的誘導處理組,各質體表現量無顯著差異。此外,本論文亦嘗試建構白腹叢蚊體內報導基因表現系統,用以探討cecropin基因五端轉錄作用調節區的誘導表現。蚊體試驗先測試注射上述質體,或質體轉染試劑cellfectin II,結果顯示受測之雌蚊存活率為97%與83%,且利用即時定量聚合酶連鎖反應 (real-time PCR)檢測引子增幅效能均達90%以上。同時1939 CecA2-pGL4質體在注射進雌蚊體內後可偵測得報導基因luciferase表現之RNA,顯示白腹叢蚊蚊體可以進行外源基因調控區研究之應用。在蚊體注射1939 CecA2-pGL4、1609 CecA2-pGL4與1184 CecA2-pGL4質體後,再利用大腸桿菌進行誘導作用,初步結果證實cecropin A2五端各片段區域具有基因轉錄作用調控現象,其表現模式與C6/36細胞結果相似。
URI: http://hdl.handle.net/11455/89112
其他識別: U0005-0302201516503400
Rights: 同意授權瀏覽/列印電子全文服務,2018-02-05起公開。
Appears in Collections:昆蟲學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101036007-1.pdf1.83 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.