Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89186
標題: 春石斛蘭春化作用相關基因之選殖與轉殖
Cloning and Transformation of Vernalization-Related Genes in Nobile Type Dendrobium Orchid
作者: Shun-Min Yang
楊舜閔
關鍵字: 春石斛;春化基因;基因轉殖;Nobile-type Dendrobium;Vernalization gene;Gene transformation
引用: 李文南。2013。深層海水冷源應用於春石斛催花之研究。102年試驗研究推廣成果研討會:5-25。 金石文、呂廷森、陳福旗。2010。春石斛育種及種苗生產技術之研發。2010花卉研究團隊研究現況與展望研討會專刊:46-61。 張妙彬、梁擎中、肖浩、岑鵬、范干群、潘麗晶。2008。農桿菌介導石斛蘭遺傳轉化的研究。園藝學報35(4):565-570。 Amasino, R. M. and S. D. Michaels. 2010. The timing of flowering. Plant Physiol. 154:516-520. Aoyama, T. and N-H. Chua. 1997. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11(3):605-613. Ausín, I., C. Alonso-Blanco, J. A. Jarillo, L. Ruiz-García1 and J. M Martínez-Zapater. 2004. Regulation of flowering time by FVE, aretinoblastoma-associated protein. Nature Genetics 36:162-166. Bastow, R., J. S. Mylne, C. Lister, Z. Lippman, R. A. Martienssen, and C. Dean. 2004. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature, 427:164-167. Blázquez, M. A., R. Green, O. Nilsson, M. R. Sussman, and D. Weigel. 1998. Gibberellins promote flowering of Arabidopsis by activatingthe LEAFY Promoter. Plant Cell 10:791-800. Bunnag, S. and W. Pilahome. 2011. Agrobacterium-mediated transformation of Dendrobium chrysotoxum Lindl. Afr. J. Biotechnol. 11(10):2472-2476. Corrado, G. and M. Karali. 2009 Inducible gene expression systems and plant biotechnology. Biotechnol. Adv. 27:733-743. De Lucia, F., P. Crevillen, A. M. Jones, T. Greb, and C. Dean. 2008. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc. Natl. Acad. Sci. USA 105:16831-16836. Deng, W., H. Ying, C. A. Helliwell, J. M. Taylor, W. J. Peacock, and E. S. Dennis. 2011. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc. Natl. Acad. Sci. USA 108: 6680-6685. Dieffenbach, C. W., T. M. J. Lowe, and G. S. Dveksler. 1993. General concepts for PCR Primer design. PCR Methods Applic. 3:S30-S37. Filichkin, S. A., R. Meilan, V. B. Busov, C. Ma, A. M. Brunner, and S. H. Strauss. 2006. Alcohol-inducible gene expression in transgenic Populus. Plant Cell Rep. 25:660-667. Gatz, C. and P. H. Quailt. 1991. Tn10-encoded tet repressor can regulate an operator-containing plant promoter. Proc. Natl. Acad. Sci. USA 85:1394-1397. He, Y., S. D. Michaels, and R. M. Amasino. 2003. Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751-1754. Helliwell, C. A., C. C. Wood, M. Robertson, W. J. Peacock, and E. S. Dennis. 2006. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 46:183-192. Hsiao, Y-Y., Z-J. Pan, C-C. Hsu, Y-P. Yang, Y-C. Hsu, Y-C. Chuang, Y-C. Chuang, H-H. Shih, W-H. Chen, W-C. Tsai, and H-H. Chen. 2011. Research on orchid biology and biotechnology. Plant Cell Physiol. 52: 1467-1486. Jacobsen S. E. and N. E. Olszewski. 1993. Mutations at the SPINDLY Locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5:887-896. Junker, B. H., C. Chu, U. Sonnewald, L. Willmitzer, and A. R. Fernie. 2003. In plants the alc gene expression system responds more rapidly following induction with acetaldehyde than with ethanol. FEBS (Fed. Eur. Biochem. Soc.) Lett. 535:136-140. Kang, H. G., Y. Fang, and K. B. Singh. 1999. A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes. Plant J. 20:127-133. Kim, D. H., M. R. Doyle, S. Sung, R. M. Amasino. 2009. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 25:277-299. Kinkema, M., R. J. Geijskes, K. Shand, H. D. Coleman, P. C. De Lucca, A. Palupe, M. D. Harrison, I. Jepson, J. L. Dale, M. B. Sainz. 2014. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugarcane. Plant Mol. Bio. 84:443-454. Kobayashi, Y. and D. Weigel. 2007. Move on up, it's time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev, 21:2371-2384. Koornneef, M., C. Alonso-Blanco, H. Blankestijn-de Vries, C. J. Hanhart, and A. J. M. Peeters. 1998. Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148:885-892. Kuehnle, A. R. and N. Sugil. 1992. Transformation of Dendrobium orchid using particle bombardment of protocorms Plant Cell Rep. 11:484-488. Lee, I., M. J. Aukerman, S. L. Gore, K. N. Lohman, S. D. Michaels, L. M. Weaver, M. C. John, K. A. Feldmann, and R. M. Amasino. 1994. Isolation of LUMINIDEPENDENS: A gene involved in the control of flowering time in Arabidopsis. Plant Cell 6:5-83. Liang, S., Q. S. Ye, R. H. Li, J. Y. Leng, M. R. Li, X. J. Wang, and H. Q. Li. 2012. Transcriptional regulations on the low-temperature-induced floral transition in an Orchidaceae species, Dendrobium nobile: an expressed sequence tags analysis. Comp. Funct. Genomics 2012: Article ID 757801, pp.14.Lin, M., T. Starman, Y. T. Wang, and G. Niu. 2011. Vernalization duration and light intensity influence flowering of three hybrid nobile dendrobium cultivars. HortScience 46:406-410. Love, J., A. C. Scott, and W. F. Thompson. 2000. Stringent control of transgene expression in Arabidopsis thaliana using Top10 promoter system. Plant J. 21:579-588. Marquardt, S., P. K. Boss, J. Hadfield, and C. Dean. 2006. Additional targets of the Arabidopsis autonomous pathway members, FCA and FY. J. Exp. Bot. 57:3379-3386. Men, S., X. Ming, and C. Wei. 2003. Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell Tiss. Org. Cult. 75:63-71. Moyroud, E., E. Kusters, M. Monniaux, R. Koes, and F. Parcy. 2010. LEAFY blossoms. Trends Plant Sci. 15:346-252. Padidam M, M. Gore, DL. Lu, and O. Smirnova. 2003. Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgenic Res. 12(1):101-9. Padidam, M. 2003. Chemically regulated gene expression in plants. Curr. Opin. Plant Biol. 6:169-177. Reeves, P. H. and G. Coupland. 2001. Analysis of Flowering time control in Arabidopsis by comparison of double and triple mutants. Plant physiol. 126:1085-1091. Roslan, H. A., M. G. Salter, C. D. Wood, M. R. H. White, K. P. Croft, F. Robson, G. Coupland, J. Doonan, P. Laufs, A. B. Tomsett, and M. X. Caddick. 2001. Characterization of the ethanol-inducible alc gene expression system in Arabidopsis thaliana. Plant J. 28(2):225-235. Rotor, G. B. J. 1952. Daylength and temperature in relation to growth and flowering of orchids. Cornell Agr. Expt. Sta. Bul. 885:1-47. Saijo, T. and A. Nagasawa. 2014. Development of a tightly regulated and highly responsive copper-inducible gene expression system and its application to control of flowering time. Plant Cell Rep. 33:47-59. Schmitz, R. J., S. Sung, and R. M. Amasino. 2008. Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 105:411-416. Searle, I., Y. He, F. Turck, C. Vincent, F. Fornara, S. Kröber, R. A. Amarsino, and G. Coupland. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20:898-912. Shan, X., J. Yan, and D. Xie. 2012. Comparison of phytohormone signaling mechanisms. Curr. Opin. Plant Biol. 15:84-91. Simpson, G. G., P. P. Dijkwel, V. Quesada, I. Henderson, and C Dean. 2003. FY is an RNA 3'-end processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:777–787. Song, Y. H., S. Ito, and T. Imaizum. 2013. Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18(10): 575-583. Sung, S. and R. M. Amasino. 2004. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159-164. Trevaskis, B., M. N. Hemming, E. S. Dennis, and W. J. Peacock. 2007. The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 12(8):352-357. Wigge, P. A. 2011. FT, A Mobile Developmental Signal in plant. Curr. Biol. 21:374-378. Wood, C. C., M. Robertson, G. Tanner, W. J. Peacock, E. S. Dennis, and C. A. Helliwell. 2006. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc. Natl. Acad. Sci. USA 103:14631-14636. Yen, C. Y. T., T. W. Starman, Y. T. Wang, and G. Niu. 2008. Effect of cooling temperature and duration on flowering of the nobile dendrobium orchid. HortScience 43:1765-1769. Yu, H., S. H. Yang, and C. J. Goh. 2001. Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1. Plant Cell Rep. 20:301-305. Zou, J., Q-W. Niu, and N-H. Chua. 2000. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24(2):265-273.
摘要: 
Nobile type Dendrobium is a section of Dendrobium that includes many closely related species and their hybrids. Nobile-type Dendrobiums are cultivars bred mainly from Dendrobium nobile. Nobile type Dendrobium is a new orchid crop to be promoted in Taiwan due to its potentials in economic cultivation.
Many plants grown in temperate climates require vernalization and must experience a period of low winter temperature to initiate or accelerate the flowering process. In Taiwan, the culture practice is bringing the pot plants to higher elevation or flower forcing in cold room to satisfy the chilling requirement. The mechanism of vernalization in Dendrobium nobile has been elucidated recently and has revealed ways to regulate flowering of Nobile type Dendrobium. The objective of this study is to develop the innovative biotechnologies for regulating flowering of Nobile type Dendrobium with uniform flowering, low cost, and high marketing value via transformation of vernalization-related genes VRN1 and AGL19.
A suitable production system for protocorm-like bodies (PLBs) induction and proliferation of nobile type Dendrobium was established from seeds germinated in vitro. VRN1, AGL19, and FT cDNAs had been cloned from nobile type Dendrobium and verified by DNA sequence analysis. Plant transformed vectors harboring the VRN1, DnAGL19, SOC1, and FT genes under the control of constitutive (using CaMV 35S promoter and constructed into pCAMBIA 2301 and pCAMBIA 1304), tissue specific (using AP1 promoter and constructed into p1304-AP1-IN) or alcohol inducible (using AlcR/AlcA system and constructed into pBJ36-AlcA and pMLBART-AlcR) expression had been constructed. VRN1 and AGL19 genes were co-transformed into the PLB of the nobile type Dendrobium by Agrobacterium-mediated transformation. The regenerated plantlets were selected by antibiotics. The results of GUS activities, PCR and RT-PCR analysis of putative transgenic leaves indicated that the transformed genes were presented in the genome of transformed plantlets, and expressed its mRNA.

春石斛(Nobile-type Dendrobium)為石斛蘭屬石斛蘭節(Dendrobium section Dendrobium)內之原種群,以金釵石斛(Den. nobile)為基本種所雜交選育出之品種群的總稱。春石斛是一種具有較高觀賞價值的熱帶蘭中名貴花卉,花色繁多豔麗,花多,花型大,花枝長,在國際花卉市場上佔有重要的地位。台灣地處亞熱帶氣候區,適合春石斛種苗之養成,是台灣極具外銷發展潛力的外銷蘭花,唯品種來源、種苗生產管理技術、低溫催花等技術仍待開發。
最近的研究對春石斛蘭春化調控的途徑有初步的瞭解,本研究以金釵石斛的春化調控的途徑模式為理論基礎,嘗試轉殖VRN1與AGL19等春化作用之相關基因到春石斛蘭。其目的為以基因轉殖技術創新出可調控植株春化作用的技術,開發出花期一致、節省成本、高品質之春石斛蘭。
本研究已完成建立春石斛蘭之種子無菌播種,誘導出擬原球體(PLB)及增生系統。已完成選殖及分析春石斛蘭的VRN1、AGL19及FT等春化作用相關基因。已完成將選殖之VRN1、AGL19、FT cDNA,分別構築到大量表現 (CaMV35S啟動子,構築到pCAMBIA 2013及pCAMBIA 1304)、組織特異表現 (AP1啟動子,構築到p1304-AP1-IN)及化學藥劑(AlcR/AlcA酒精誘導表現系統,構築到pBJ36-AlcA及pMLBART-AlcR)誘導表現之轉殖載體的農桿菌轉殖載體。已進行將攜帶VRN1及AGL19基因之載體,共同轉殖到春石斛蘭之類原球體 (PLB),並進行篩選及誘導轉殖植株再生。轉殖再生培植體葉片之GUS活性、PCR及RT-PCR分析之結果顯示,轉殖之VRN1及AGL19基因已存在於轉殖培植體之基因組,並表現其mRNA。
URI: http://hdl.handle.net/11455/89186
其他識別: U0005-1408201520592800
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-20起公開。
Appears in Collections:園藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102032022-1.pdf6.9 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.