Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89195
標題: 添加芽孢桿菌之微生物介質對百合及其他園藝作物生長的影響
Effects of Bio-Mix supplemented with Bacillus spp. on the growth of oriental lily and some horticultural crops.
作者: Po-Tsung Chen
陳柏璁
關鍵字: 芽孢桿菌;微生物介質;載體;椰纖;東方型百合;Bacillus spp.;Bio-Mix;carrier;coir dust;oriental lily
引用: 參考文獻(References) 丁姵分. 2006. 番茄萎凋病之生物防治菌的鑑定與防病潛?評估. 國立中興大學植物病理學系碩士論文. 台中. 王文?、?俊英. 2009. 植物吸收利用有機氮營養研究進展. 應用生態學報. 20(5):1223-1228. 石信德、黃振文. 2010. 鏈黴菌生物製劑之應用潛力. 農業生技產業季刊 24: 39-46. 吳浩銘、張金元、陳裕星、田雲生. 2013. 霧耕栽培用噴霧機具之研製. 台中區農業改良場研究匯報. 121: 35-47. 李雅惠. 2002. 拮抗性桿菌屬(Bacillus spp.)之分離、培養與抗生活性之改進以及病害防治之應用. 國立中興大學植物病理學系碩士論文. 台中. 谷普川、張允湘、劉業川. 2004. 應用微波技術對矽藻土進行改性. 四川大學學報(工程科學版). 36(6): 43-47. 谷普川、張允湘、劉業川. 2004. 應用微波技術對矽藻土進行改性. 四川大學學報(工程科學版). 36(6):43-47. 周俊吉、陳泰安、施怡?、曾耀徵、曾德賜. 1997. 拮抗性枯草桿菌(Bacillus spp.)的篩選、試?產培養與病害防治應用. 植病會刊 6: 209-210(摘要). 周浩平. 2010. 以放線菌製作抑病性作物栽培介質技術開發及其對蔬菜苗期病害之防治效果評估. 中華植物病理學年會論文宣讀摘要. 林弘裕. 2002. 液化澱粉芽孢桿菌胜?抗生物質之分析與回收純化物質探討. 國立東華大學生物技術研究所碩士論文. 花蓮. 胡?祥. 1980. 木瓜氮素代謝及輪點型毒素病對其可能之影響. 國立中興大學園藝學系碩士論文. 台中. 高德錚. 1986. 水耕栽培-精緻蔬菜生產技術之開發. 台中區農推專訊. 56期. 高德錚. 2005. 無土栽培. 台中區農業改?場場訊. P.1-8. 張仲民. 1987. 普通土壤學. 國立編譯館. 台北. p.24. 張治國. 2001. 接種菌根菌溶磷菌對蓮霧組織培養苗生長之影響. 國立中興大學園藝學系碩士論文. 台中. 張則周. 2008. 植物營養學. 五南圖書出版股份有限公司. 台北. 張廣淼. 1999. 植物病害生物防治. 台灣省苗栗區農業改良場發行苗栗區農業專訊. 苗栗. 莊茗凱、李思儀、黃振文. 2012. 台灣甘藍黃葉病菌的鑑定及其對十字花科蔬菜的致病性. 植物病理學會刊. 21: 29-38. 莊茗凱. 2012. 調製栽培介質防治甘藍黃葉病. 國立中興大學植物病理學系碩士論文. 台中. 莫良玉、?良?、陶勤南. 2002. 高等植物對有機氮吸收與利用研究進展. 生態學報. 22(1): 118-124. 許圳塗、金石文、阮明淑. 2002. 百合. 實用花卉栽培技術專輯/5. 台北. p.16-43. 郭建志、陳俊位、廖君達、陳葦玲、蔡宜?. 2014. 液化澱粉芽孢桿菌在作物病害防治的開發與應用. 農業生物資材產業發展研討會專刊. 121: 69-86. 陳和緯、林盈宏、黃振文、張碧芳. 2010. Bacillus mycoides CHT2402 對萵苣幼苗生長之影響. 植物病理學會刊19: 157-165. 陳俊位、鄧雅靜、曾德賜. 2009. 功能性微生物製劑在有機作物栽培病害管?上之應用. 台中區農業改良場特刊. 96: 1-8. 陳敬文. 2013. 桿菌添加劑對芭菲爾鞋蘭生長之影響. 國立中興大學園藝學系碩士論文. 台中. 曾明寶. 1997. 四種有機成分介質理化性變化及對盆栽植物的影響. 國立中興大學園藝學系碩士論文. 台中. 黃振文、彭玉湘、莊茗凱. 2014 蕈狀芽孢桿菌植物保護製劑的功效與應用技術. 中華永續農業協會會刊. 印刷中 黃靜淑. 2008. Bacillus mycoides 防治甘?幼苗病害之效果評估. 國立中興大學植物病理學系碩士論文. 台中. 楊長賢、李宗翰、詹富智、賴建成. 2013. 生物製劑專刊. 生物科技產學論壇. p.17-47. 楊秋忠、趙維良、廖啟成、黃山內、曾顯雄、許文輝. 2003. 台灣土壤微生物之收集應用. 中正基金會專題研究報告. 台北. pp.85-93. 楊秋忠. 1997. 土壤與肥料. 農世股份有限公司. 台中. 楊惠如. 2006. 枯草桿菌處理對苦瓜種子發芽及植株生長之影響. 國立中興大學園藝學系碩士論文. 台中. 劉益宏、黃健瑞、林玉儒、陳昭瑩. 2008. ?用植物免疫?防治病害的現況與展望. 節能減碳與作物病害管?研討會. pp.193-202. 潘瑞熾. 2006. 植物生理學. 藝軒出版社. 台北. P.53. 蔡?龍、陳敏瑞、徐世典、曾德賜、曾國欽. 2004. 葉表螢光假單胞菌Pseudomonas putida YLFP14對甜椒細菌性斑點病之防治潛力. 植物病理學會刊 13: 191-200. 龍韻存、陳忠益、謝曉澐、張志鵬. 2010. 椰纖應用於無土栽培介質之研究. 華岡紡織期刊. 17(3): 17-24. 戴裕森. 2010. 不同型態氮源對芭菲爾鞋蘭生長之影響. 國立中興大學園藝學系碩士論文. 台中. 謝奉家. 2012. 具商品化潛力之多功能液化澱粉芽孢桿菌. 農業生技產業季刊. 32: 42-47. 顏再生. 2007. 本土液化澱粉芽孢桿菌含伊枯草菌素A同分異構物之鑑定. 朝陽科技大學應用化學系碩士論文. 台中. Acea, M. J., C. R. Moore, and M. Alexander. 1988. Survival and growth of bacteria introduced into soil. Soil Biol. Biolchem. 20: 509-515. Alvindia, D. G. and K. T. Natsuaki. 2009. Biocontrol activities of Bacillus amyloliquefaciens DGA14 isolated from banana fruit surface against banana crown rot-causing pathogens. Crop Prot. 28: 236-242. Antonopoulos, D. F., S. E. Tjamos, P. P. Antoniou, P. Rafeletos, and E. C. Tjamos. 2008. Effect of Paenibacillus alvei, strain K165, on the germination of Verticillium dahlia microsclerotia in planta. Biological Control. 46: 166-170. Ash, C., J. A. Farrow, M. Dorsch, E. Stackebrandt, and M. D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41: 343-6. Badri, D. V., T. L. Weir, D. V. D. Lelie, and J. M. Vivanco. 2009. Rhizosphere chemical dialogues: plant–microbe interactions. 20: 642-650. Bais, H. P., T. L. Weir, L.G. Perry, S. Gilroy, J. M. Vivanco. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology. 57: 233-266. Barkham, J. P. 1993. For peat's sake: Conservation or exploitation. Biodiversity Conservation 11: 1877-1887. Barrera-Aguilar, E., L. A. V. Aguilar, A. M. C. Gonza?lez, A. D. Cartmill, D. L. Cartmill, E. A. Garc??a, and L. I. J??menez. 2013. Potassium nutrition in Lilium: critical concentrations, photosynthesis, water potential, leaf anatomy, and nutrient status. HortScience. 48: 1537-1542. Bashan, Y. and L. E. D. Bashan. 2005. Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: a critical examination. Soil Biol. Biochem. 37: 1795-1804. Biever, K. D., D. L. Hostetter, J. R. Kern. 1994. Evolution and Implementation of a Biological Control-IPM System for Crucifers: 24-Year Case History. American Entomologist. 40: 103-109. Biondi, E., N. Kuzmanovic, A. Galeone, E. Ladurner, M. Benuzzi, P. Minardi and A. Bertaccini. 2012. Potenial of Bacillus amyloliquefaciens strain D747 as control agent against Pseudomonas syringae pv. actinidiae. J. Plant Pathol. 94: 58. Bradley, D. P., M. A. Morgan, P. O'Toole. 1989. Uptake and apparent utilization of urea and ammonium nitrate in wheat seedlings. Fert Res 20:41–49. Brian, B., and M. Gardener. 2004. Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems. The American Phytopathological Society. 94: 1252-1258. Britto, Dev T., and Herbert J. Kronzucker 2002. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 159: 567-584. Buckland, P. C. 1993. Peatland archeology: A conservation resource on the edge of extinction. Biodiversity Conservation 2: 513-527. Cakmakci, R., F. Donmez, A. Ayd?n, and F. Sahin. 2005. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38: 1482-1487. Cappellari, L. D. R., M. V. Santoro, F. Nievas, W. Giordano, and E. Banchio. 2013. Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol. 70: 16-22. Chanway, C. P., M. Shishido, J. Nairn, S. Jungwirth, J. Markham, G. Xiao, and F. B. Holl. 2000. Endophytic colonization andfield responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. Forest Ecology Management. 133: 81-88. Chapin III, F. S., L. Moilanen, and K. Kielland. 1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361, 361:150–153. Chen, Y. P., P. D. Rekha, A. B. Arun, F. T. Shen, W. A. Lai, and C. C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34: 33-41. Chiou, A. L., and W. S. Wu. 2001. Isolation, identification and evaluation of bacterial antagonists against Botrytis ellipticaon lily. J. Phytopathol. 149: 319-324. Chithrashree, A. C. Udayashankar, S. C. Nayaka, M. S. Reddy, and C. Srinivas. 2011. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control. 59: 114-122. Cho, S. J., W. J. Lim, S. Y. Hong, S. R. Park, and H. D. Yun. 2003. Endophytic Colonization of Balloon Flower by Antifungal Strain Bacillus sp. CY22. Biosci. Biotechnol. Biochem. 67: 2132-2138. Chou, H. P., Y. H. Lin, Y. C.Yen, Y. C. Chen, and T. C. Huang. 2012. Application and evaluation of multiple microorganisms in controlling bacterial wilt of Solanaceous plants. p. 30. 101 annual meeting of the plant protection society of the Republic of China. Chu, H., X. Lin, T. Fujii, S. Morimoto, K. Yagi, J. Hu, and J. Zhang. 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 39: 2971-2976. Compant, S., B. Duffy, J. Nowak, C. Clement, and E. A. Barka. 2005a. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. J Appl. Environ Microbiol. 71: 4951-4959. Compant, S., B. Reiter, A. Sessitsch, J. Nowak, C. Cle?ment, and E. Aitbarka. 2005b. Endophytic colonization of Vitis vinifera L. by a plant growth promoting bacterium, Burkholderia sp. strain PsJN. Appl. Environ. Microbiol.71: 1685-1693. Compant, S., C. Cl?ment, and A. Sessitsch. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Microbiology and Biochem. 42: 669-678. Conn, K. L., J. Nowak, and G. Lazarovitz. 1997. A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Canadian Journal of Microbiology. 43: 801-808. De-Bashan, L. E., J. P. Hernandez, Y. Bashan, and R. M. Maier. 2010. Bacillus pumilus ES4: Candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environ. Exp. Bot. 69: 343-352. Dey, R., K. K. Pal, D. M. Bhatt, and S. M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research. 159: 371-394. Dijkstra, A. F., G. H. N. Scholten, and J. A. van Veen. 1987. Colonization of wheat seedling(Triticum aestivum) roots by Pseudomonas ?uorescens and Bacillus subtilis. Biol.Fert. Soils 4: 41–46. Dodd, I. C. and J. M. R. Lozano. 2012. Microbial enhancement of crop resource use efficiency. Curr. Opin. Biotechnol. 23: 236-242. Dong, Y. H., A. R. Gusti, Q. Zhang, J. L. Xu, and L. H. Zhang. 2002. Identification of Quorum-Quenching N-Acyl Homoserine Lactonases from Bacillus Species. Appl. Environ. Microbiol. 68: 1754-1759. Egamberdieva, D., Z. Kucharova, K. Davranov, G. Berg, N. Makarova, T. Azarova, V. Chebotar, I. Tikhonovich, F. Kamilova, S. Z. Validov, and B. Lugtenberg. 2011. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol. Fertil. Soils. 47: 197-205. Emmert, E. A. B., J. Handelsman. 1999. Biocontrol of plant disease: a Grampositive perspective. FEMS Microbiol Lett. 171: 1-9. Errington, J. 2003. Regulation of endospore formation in bacillus subtilis. Nat. Rev. Microbiol. 1: 117-126. Evans, M. R., S. Konduru, and R. H. Stamps. 1996. Source variation in physical and chemical properties of coconut coir dust. HortScience. 31: 965-967. Forchetti, G., O. Masciarelli, S. Alemano, D. Alvarez, and G. Abdala. 2007. Endophytic bacteria in sun?ower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl. Microbiol. Biotechnol. 76: 1145-1152. Forde, B. G. and D. T. Clarkson. 1999. Nitrate and ammonium nutrition of plants: Physiological and molecular perspectives. Advances in Botanical Research. 30: 1-90. Furuya, S., M. Mochizuki, Y. Aoki, H. Kobayashi, T. Takayanagi, M. Shimizu and S. Suzuki. 2011. Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Technol. 21: 705-720. Garg, N., and G. Manchanda. 2008. Effect of Arbuscular Mycorrhizal Inoculation on Salt-induced Nodule Senescence in Cajanus cajan (Pigeonpea). J Plant Growth Regul. 27: 115-124. Garrett, S. D. 1965. Towards biological control of soil-borne plant pathogens. In: Ecology of soil-borne Plant Pathogens. University of California Press. Berkeley. p.571. Goldstein, A.H. 1986. Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. Am. J. Altern. Agricult. 1: 57-65. Graham-Weiss. L., M. L. Benette, and A. S. Paau. 1987. Production of Bacterial Inoculants by Direct Fermentation on Nutrient Supplemented Vermiculite. App. Environ. Microbiol. 53: 2138-2141. Guti?rrez-Luna, F. M., J. L. Bucio, J. A. Hern?ndez, E. V. Cantero, H. R. D. L. Cruz, and L. M. Rodr?guez. 2010. Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis. 51: 75-83. Hardoim, P. R., L. S. V. Overbeek, and J. D. V. Elsas. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16: 463-471. Hine, J. C., and J. I. Sprent. 1988. Growth of Phaseolus vulgaris on various nitrogen sources : the importance of urease. J. Exp. Bot. 39:1505–1512. Hsieh, F. C., M. C. Li, and S. S. Kao. 2003. Evaluation of the inhibition activity of Bacillus subtilis-based products and their related metabolites against pathogenic fungi in Taiwan. Plant Prot. Bull. 45: 155-162. Hsieh, F. C., M. C. Li, T. C. Lin, and S. S. Kao. 2004. Rapid detection and characterization of surfactin - producing Bacillus subtilis and closely related species based on PCR. Curr. Microbiol. 49: 186-191. Hsieh, T. F., J. W. Huang, and T. Hsiang. 2001. Light and scanning electron microscopy studies on the infection of oriental lily leaves by Botrytis elliptica. Eur. J. Plant Pathol. 107: 571-581. Hu, C. and Y. Qi. 2013. Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur J Agron. 46: 63-67. Huang, C. J., T. K. Wang, S. C. Chung, and C. Y. Chen. 2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J. Biochem. Mol. Biol. 38: 82-88. Hultberg, M., B. Alsanius, and P. Sundin. 2000. In Vivo and in Vitro Interactions between Pseudomonas fluorescens and Pythium ultimum in the Suppression of Damping-off in Tomato Seedlings. Biological Control. 19: 1-8. Idris, E. E., D. J. Iglesias, M. Talon, and R. Borriss. 2007. Tryptophan-dependent production of Indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microbe Interact. 20:619–626. Inbar, Y., Y. Chen, and Y. Hadar. 1990. Humic substance formed during composting of organic matter. Soil Sci. Soc. Am. J. 56: 1316-1323. Jaleel, C. A., P. Manivannan, B. Sankar, A. Kishorekumar, R. Gopi, R. Somasundaram, and R. Panneerselvam. 2007. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B Biointerfaces. 60: 7-11. Jetiyanon, K. 2007. Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b) against different pathogens. Biological Control. 42: 178-185. J?nior, R. F. G., E. A. N. Pedrinho, T. C. L. Castellane, and E. G. de M. Lemos. 2011. Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered brazilian orchid, and their role in acclimatization. R. Bras. Ci. Solo 35: 729-737. Karakurt, H. and R. Aslantas. 2010. Effects of some plant growth promoting rhizobacteria (PGPR) strains on plant growth and leaf nutrient content of Apple. J. Fruit Ornam. Plant Res. 18: 101-110. Katiyar, V. and R. Goel. 2003. Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol. Res. 158: 163-168. Khan, N., A. Mishra, and C. S. Nautiyal. 2012. Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control. 62: 65-74. Khavazi, K. and F. Rejali. 2000. Perlite as a Carrier for Soybean Inoculant. Paper Presented in XthInternational Colloquium for the Optimization of Plant Nutrition. Cairo, Egypt p.12-14. Kievit, T. R. D. and B. H. Lglewski. 2000. Bacterial Quorum Sensing in Pathogenic Relationships. Infect. Lmmum. 68: 4839-4849. Kim, J. K., K. J. Park, K. S. Cho, S. W. Nam, T. J. Park, and R. Bajpai. 2005. Aerobic nitrification–denitrification by heterotrophic Bacillus strains. Bioresour. Technol. 96: 1897-1906. Kloepper J.W. and M. N. Schroth. 1978. Plant growth promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, Angers, France. p. 879-882. Kloepper, W. J., C. M. Ryu, and S. Zhang. 2004. Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology. 94: 1259-1266. Knox, O. G. G., K. Killham, and C. Leifert. 2000. Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis. Appl. Soil Ecol. 15: 227-231. Korsten, L., E. S. D. Jager, and E. E. D. Villiers. 1995. Evaluation of bacteria epiphytes isolated from avocado leaf and fruit surfaces for biocontrol of avocado postharvest disease. Plant Dis. 79: 1149-1156. Krebs, B., B. Hoding, S. M. Kubart, A. Workie, H. Junge, G. Schmiedeknecht, R. Grosch,,H. Bochow, and M. Hevesi. 1998. Use of Bacillus subtilis as biocontrol agent. 1. Activities and characterization of Bacillus subtilis strain. J. Plant Dis. Prot. 105: 181-197. Kumar, A., A. Prakash, and B. N. Johri. 2011. Bacillus as PGPR in Crop Ecosystem. Bacteria in Agrobiology: Crop Ecosystems. DOI 10.1007/978-3-642-18357-7_2. Kumar, P., S. Khare, and R. C. Dubey. 2012. Diversity of Bacilli from disease suppressive soil and their role in plant growth promotion and yield enhancement. New York Sci. J. 5: 90-111. Kurabachew, H. and K. Wydra. 2013. Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biological Control. 67: 75-83. Lea, P. J. Primary nitrogen metabolism. In: DAY, P.M.; J.B. HARBORN (Ed.) 1997. Plant biochemistry. New York: Academic Press. cap.7: 273-313. Lee, K. J., S. Kamala-Kannan, H. S. Sub, C. K. Seong, and G. W. Lee. 2008. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J. Microb. Biotechnol. 24: 1139–1145. Li, L., J. Ma, Y. Li, Z. Wang, T. Gao, and Q. Wang. 2012. Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop Prot. 35: 29-35. Li, S-B., M. Fang, R-C. Zhou, and J. Huang. 2012. Characterization and evaluation of the endophyte Bacillus B014 as a potential biocontrol agent for the control of Xanthomonas axonopodis pv. dieffenbachiae–induced blight of Anthurium. Biological Control. 63: 9-16. Lipson, D. A., T. K. Taab, S. K. Schmidt, and R. K. Monson. 2001. An empirical model of amino acid transformations in an alpine soil. Soil Biology and Biochemistry 33: 189-198. Liu, L. H., U. Ludewig, B. Gassert, W. B. Frommer, and N. von Wir?n. 2003a. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133: 1220-1228. Liu, Y. H., C. J. Huang, and C. Y. Chen. 2008. Evidence of induced systemic resistance against Botrytis elliptica in Lily. Plant pathol. 98: 830-836. Lodewyckx, C., J. Vangronsveld, F. Porteous, E. R. B. Moore, S. Taghavi, M. Mezgeay, D. Lelie. 2002. Endo phytic bacteria and their potential applications. Crit Rev Plant Sci. 21: 583-606. L?pez-Bucio, J., J. C. Campos-Cuevas, E. Hern?ndez-Calder?n, C. Vel?squez-Becerra, R. Far?as-Rodr?guez, L. I. Mac?as-Rodr?guez, and E. Valencia-Cantero. 2007. Bacillus megaterium Rhizobacteria Promote Growth and Alter Root-System Architecture Through an Auxin- and Ethylene-Independent Signaling Mechanism in Arabidopsis thaliana. The American Phytopathological Society. 20: 207-217. L?pez-Valdez, F., F. Fern?ndez-Luque?no, J. M. Ceballos-Ram?rez, R. Marsch, V. Olalde-Portugal, and L. Dendooven. 2011. A strain of Bacillus subtilis stimulates sun?ower growth (Helianthus annuus L.) temporarily. Sci. Hort. 128: 499-505. Lugtenberg, B. and F. Kamilova. 2009. Plant-Growth-Promoting Rhizobacteria. Annu. Rev. Microbiol. 63: 541-56. Majerowicz, N., G. B. Kerbauy, C. C. Nievola, and R. M. Suzuki. 2000. Growth and nitrogen metabolism of Catasetum ?mbriatum (orchidaceae) grown with different nitrogen sources. Environmental and Experimental Botany 44: 195-206. Manikandan, R., D. Saravanakumar, L. Rajendran, T. Raguchander, and R. Samiyappan. 2010. Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biological Control. 54: 83-89. Matsumoto, S. 1999. Fundamentals and Practices of Soil Bioremediation. Soil Science and Plant Nutrition 45: 237-251. Mckenney, P. T., A. Driks, and P. Eichenberger. 2013. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nature Reviews Microbiology. 11: 33-44. Mcrae, E. A. 1998. Lilies: a guide for growers and collectors. Timber press. Portland, Oregon. Meerow, A. W. 1997. Coir dust, a viable alternative to peat moss. Greenhouse Product News. January: 17-21. Menaka, V. and A. R. Alagwadi. 2007. Enhanced Survival and Performance of Phosphate Solubilizing Bacterium in Maize through Carrier Enrichment. Karntaka J. Agril. Sci. 20: 170-172. Mena-Violante, H. G. and V. O. Portugal. 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hort. 113: 103-106. M?rigout, P., M. Lelandais, F. Bitton, J. Renou, X. Briand, C. Meyer, and F. Daniel-Vedele. 2008. Physiological and Transcriptomic Aspects of Urea Uptake and Assimilation in Arabidopsis Plants. Plant Physiol. 147: 1225-1238. Migheli, Q., C. Aloi, and M. L. Gullino. 1990. Resistance of Botrytis ellipticato fungicides. Acta Hort. 266: 429-436. Msadek, T. 1999. When the going gets tough: survival strategies and environmental signaling networks in Bacillus sbutilis. Trends in Microbiology. 7:201-207. Muller, B.,and Touraine B. 1992. Inhibition of NO3- uptake by various phloem- translocated amino acids in soybean seedlings. J Exp Bot. 43: 617-643. Myresiotis, C. K., Z. Vryzas, E. P. Mourkidou. 2014. Enhanced root uptake of acibenzolar-S-methyl (ASM) by tomato plants inoculated with selected Bacillus plant growth-promoting rhizobacteria (PGPR). Applied Soil Ecol. 77: 26-33. Niu, D. D., H. X. Liu, C. H. Jiang, Y. P. Wang, Q. Y. Wang, H. L. Jin, and J. H. Guo. 2011. The Plant Growth–Promoting Rhizobacterium Bacillus cereus AR156 Induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Plant-microbe interactions. 24: 533-542. Noguera, P., M. Abad, R. Puchades, V. Noguera, A. Maquieira, J. Martinez. 1997. Physical and chemical properties of coir waste and their relation to plant growth. Acta Hort. 450: 365-373. Noguera, P., M. Abad, V. Noguera, R. Puchades, and A. Maquieira. 2000. Coconut coir waste, a new and viable ecologically-friendly peat substitute. Acta. Hort. 517: 279-286. Oaks, A., W. Wallace, and D. Stevens. 1972. Synthesis and turnover of nitrate reductase in corn roots. Plant Physiol 50: 649-654. Ogbo, F. C. 2010. Conversion of Cassava Wastes for Biofertilizer Production Using Phosphate Solubilizing Fungi. Bioresour. Technol. 101: 4120-4124. Ongena, M., F. Duby, E. Jourdan, T. Beaudry, V. Jadin, J. Dommes, and P. Thonart. 2005. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl. Microbiol. Biotechnol. 67: 692-698. Osburn, R. M., J. L. Milner, E. S. Oplinger, R. S. Smith, and J. Handelsman. 1995. Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis. 79: 551-556. Parolin, P., C. Bresch, C. Poncet, and N. Desneux. 2014. Introducing the term 'Biocontrol Plants' for integrated pest management. Sci. Agric. 71: 77-80. Persson, J., T. Nasholm. 2002. Regulation of amino acid uptake in conifers by exogenous and endogenous nitrogen. Planta 215: 639-644. Petersen, D. J., M. Shishido, F. B. Hol, and C. D. Chanway. 1995. Use of species- and strain-specific PCR primers for identification of conifer root associated Bacillus spp. FEMS Microbiol. Lett. 133: 71-76. Peypoux, F., J. M. Bonmatin and J. Wallach. 1999. Recent trends in the biochemistry of Surfactin. Appl. Microbiol. Biot. 51: 553-563. Priest, F. G. 1993. Systematics and ecology of Bacillus. ln: Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, American Society of Microbiology, Washington. pp. 3-16. Reinhold-Hurek, B. and T. Hurek. 2011. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14: 435-443. Rudrappa, T., K. J. Czymmek, P. W. Pare, and H. P. Bais. 2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148: 1547-1556. Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, J. W. Kloepper, and P. W. Pare. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026. Saravanakumar, D., C. Vijayakumar, N. Kumar, and R. Samiyappan. 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot. 26: 556-565. Sartain, J. B. 1995. Effects of Clay, and Polymer Amendments on the Physical and Chemical Properties of Soil. Journal of Turfgrass Management 1: 1-18. Schmidt, S., and G. R. Stewart. 1999. Glycine metabolism by plant roots and its occurrence in Australian plant communities. Austr. J. Plant Sci. 26: 253-264. Sharga, B. M., and G. D. Lyon. 1998. Bacillus subtilis BS 107 as an antagonist of potato blackleg and soft rot bacteria. Can. J. Microbiol. 44: 777-783. Siddiqui, Z. A., and M. S. Akhtar. 2009. Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. J. Gen. Plant Pathol. 75: 144-153. Sridhar, V., G. P. Brahmaprakash, and S. V. Hegde. 2004. Development of a Liquid Inoculant Using Osmoprotectants for Phosphate Solubilizing Bacterium (Bacillus megaterium) Karnataka J. Agri. Sci. 17: 251-257. Srivastava, H.S. 1990. Regulation of nitrate reductase activity in higher plants. Phytochemistry. 19: 725-733. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology. 56: 845-857. Stoltz, J. F., and P. Bazu. 2002. Evolution of nitrate reductase: Molecular and structural variations on a common function. Chembiochem. 3: 198-206. Swain, M. R. and R.C. Ray. 2009. Biocontrol and other bene?cial activities of Bacillus subtilis isolated from cowdung micro?ora. Microbiol. Res. 164:121–130. Tan, S., Y. Jiang, S. Song, J. Huang, N. Ling, Y. Xu, and Q. Shen. 2013. Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Prot. 43: 134-140. Tan, X. W., H. Ikeda, and M. Oda. 2000. The absorption translocation and assimilation of urea nitrate or ammonium in tomato plants at different plant growth stages in hydroponic culture. Sci Hortic-Amsterdam 84: 275–283. Thomas Isaac, T. M. 1983. Class Struggle and Transition to Specifically Capitalist Form of Production: Some Conclusions of a Study of Coir Industry in Kerala. Soc Sci. 11: 35-46. Thomas Isaac, T. M. 1990. Evolution of organisation of production in coir yarn spinning industry. CDS working paper. 236: 1-10. Thornton, B. 2001. Uptake of glycine by non-mycorrhizal Lolium perenne. Journal of Experimental Bptany. 52: 1315-1322. Tr?panier, M., M. P. Lamy, and B. Dansereau. 2009. Phalaenopsis can absorb urea directly through their roots. Plant Soil 319: 95-100. Tsavkelova, E. A., T. A. Cherdyntseva, S. G. Botina, and A. I. Netrusov. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162: 69-76. Uhvits, R. 1946. Effect of osmotic pressure on water absorption and germination of alfalfa seeds. American Journal of Botany. 33: 278-285. Vassilev, N., M. Vassileva, and I. Nikolaeva. 2006. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology 77: 137-144. Velineni, S. and G. P. Brahmaprakash. 2011. Survival and Phosphate Solubilizing Ability of Bacillus megateriumin Liquid Inoculants under High Temperature and Desiccation Stress. J. Agr. Sci. Tech. 13: 795-802. Viveganandan, G., and K. S. Jauhri. 2000. Growth and Survival of Phosphate Solubilizing Bacteria in Calcium Alginate. Microbiol. Res. 155: 205-207. Waters, C. M. and B. L. Bassler. 2005. Quorum sensing:cell-to-cell communication in bacteria. Cell and Dev. Biol. 21: 319-346. Wilson, E. H. 1925. The lilies of Eastern Asia. Dulau, London. Xue, Q. Y., Y. Chen, S. M. Li, L. F. Chen, G. C. Ding, D. W. Guo, and J. H. Guo. 2009. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control. 48: 252-258. Yang, X. P., S. M. Wang, D. W. Zhang, and L. X. Zhou. 2011. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium Bacillus subtilis A1. Bioresour. Technol. 102: 854-862. Yildrim, E., M. F. Donmez, and M. Turan. 2008. Use of bioinoculants in ameliorative effects on radish plants under salinity stress. J. Plant Nutr. 31: 2059-2074. Yin, D., N. Wang, F. Xia, Q. Li, and W. Wang. 2013. Impact of biocontrol agents Pseudomonas fluorescens 2P24 and CPF10 on the bacterial community in the cucumber rhizosphere. Eur. J. Soil Biol. 59: 36-42. Yuen, G. Y. and M. N. Schroth. 1985. Interactions of Pseudomonas fluorescens strain E6 with ornamental plants and its effect on the composition of root-colonizing microflora. Plant pathol. 76: 176-180. Zaidi, S., S. Usmani, B. R. Singh, and J. Musarrat. 2006. Signi?cance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997. Zhang, Q. L., Y. Liu, G. M. Ai, L. L. Miao, H. Y. Zheng, and Z. P. Liu. 2012. The characteristics of a novel heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour. Technol. 108: 35-44.
摘要: 
Abstract
The objective of this study was to find the suitable proportion of Bacillus spp. supplemented and selected carrier to habitability of Bio-Mix. First, evaluate the effects of seeding stage to the growth of many horticultural crops including vegetable and flower. Second, tested the performance of oreintal lily growth and bulbs cultivated in Bio-Mix. Third, make assessment of the seeding growth of melon and tomato. Fourth, finally trial for different concentration of BM3 powder to Bio-Mix apply to Brassica oleracea var. alboglabra challenge to Fusarium oxysporum f.sp. conglutinans. Routine analysis of nitrogen contents and nitrate reductase activity were held. Plant mineral elements were analyzed to understand the effect of Bacillus to the nutrition uptake in some horticultural crops.
For the Bio-Mix, carrier experiment founded that for effective BM3 concentration, perlite had the most high value in two months storge trial, and diatom, calcined clay, vermiculite carrier were fallowed in sequence. And the diatom carrier had the most high ability to carried bacteria in 12 days routine watered in the greenhouse, compared to other carrier have more conserved 36% bacteria populations. Besides, diatom have the highly nitrate content about to 0.017 mmol/g but in trial terminal all treatment Bio-Mix whose elements were no different.
Using Bio-Mix to seeding plant of some horticultural crops could promote growth rate about 5~9%, and enhanced the dry and fresh weight higher than control about 12~56%, then triggered the root development of Lactuca sativa and Petunia hybrida Vilm compared to control about 37~47% raised. Besides the expression most excellent in differents concentration of BM3 added Bio-Mix supplemented to seeding Brassica oleracea var. alboglabra were 104 cfu/ml.
For the Bio-Mix tested in oriental lily , no matter field or greenhouse trial, all type of lily planting in Bio-Mix can promote the nitrogen uptaked about 6~33%. Besides in the field Bio-Mix(BM3) and Bio-Mix(BS1) to NRA and sloutable protein content, the former is higher than the latter. In addition, melon have the same trend. But all the trial in mineral element uptaking were not having difference. To bulbs cultivation, Bio-Mix can raise the dry and fresh weight obviously, however just in the field.
For seeding of melon, Bio-Mix can raise leaf numbers, leaf width, plant dry and fresh weight, plant root activity, nitrogen content even shorten the female flower stage about 4 days. On the other hand, the growth of tomato treated with BM3 obviously promoted root length, nitrogen content than control.
In Final trial about pathogen resistence, the concentration to 108 cfu/ml of BM3 have the better inhibition rate to leaf yellows, however 104 is worse. To sum up whole trial result, suggestion concentration of Bio-Mix added with B. mycoides is 106 cfu/ml.

摘要
本研究主要探討芽孢桿菌屬,微生物混拌介質(Bio-Mix)調配成份,混拌比例,及使用Bio-Mix對多種蔬菜、花卉作物育苗,及東方型百合生長,鱗莖栽培、番茄與甜瓜苗期生長、與不同混拌菌粉濃度Bio-Mix,對芥藍苗期黃葉病(Fusarium oxysporum f.sp. conglutinans)之影響。定期調查植體含氮化合物及硝酸還原?活性,並分析植物營養元素含量及根部生長狀況,以了解Bio-Mix,對百合及數種園藝作物,氮肥吸收、同化、根系生長及抗病潛力之評估。

Bio-Mix菌體保鮮試驗中,可測得菌量,以真珠石兩個月的儲藏試驗中濃度最高,矽藻土、發泡煉石及蛭石則依序次之,載菌量部份,於連續田間慣行方式澆水12天後,以矽藻土對菌的載菌量最佳,菌量仍有10.22x106 cfu/ml,相較於其他載體,如真珠石,其載菌量高約3.7 x106 cfu/ml,可多保留約36%菌量。硝酸態氮含量,以矽藻土載體混拌含量最高,約可達0.017 mmol/g,然各元素於試驗期間,各處理平均上並無差異。

育苗部份,使用Bio-Mix於多種蔬菜、如芥藍、萵苣、甜瓜;花卉作物如矮牽牛、金蓮花、紫羅蘭,苗期可促進發芽率5~9%;乾鮮重各作物各處理,均有顯著提高約12~56%不等,並可提高萵苣及矮牽牛根長之能力,相較於對照組約顯著增長37~47%。而在不同菌粉濃度Bio-Mix對芥藍苗期,發芽率及株高、鮮乾重及葉長,葉寬及根長,均以104 cfu/ml BM3菌粉濃度,效果較其他處理為佳。

百合的試驗中,不管於田間或溫室試驗,開花株或養球株,Bio-Mix對於植株全氮的吸收,均有促進效果,提高約6~33%,而田間Bio-Mix(BM3)及Bio-Mix(BS1)的使用,對根部硝酸還原?,及葉部可溶性蛋白含量,也以Bio-Mix (BM3)的促進為高,而Bio-Mix(BS1)效果次之,Bio-Mix (BM3)各項測值,依序上升比率分別為18%及54%,Bio-Mix(BS1)為10%及52%,而此情形於甜瓜中也呈現相同情況。然而對大量元素及微量元素的吸收,均無顯著差異。而鱗莖栽培部份,田間使用Bio-Mix (BM3)處理,對鱗莖鮮、乾重,具有提高效果,然而此現象,於溫室養球植株中,則沒有顯著差異。而於甜瓜苗期生長的部份,Bio-Mix(BM3)顯著提高苗期葉片數、葉寬、植株鮮重,並提高葉片全氮量,及縮短雌花始花期,相較對照組可縮短約4天。番茄部份,BM3處理,平均根長,及各時期葉片全氮量,均較對照組為高。芥藍黃葉病,以108 cfu/ml BM3菌粉濃度,兩周後發病率最低,104cfu/ml發病率為最高。然於育苗階段,則以104 cfu/ml於植株鮮乾重、葉長、株高及發芽率為最高,106cfu/ml次之,108cfu/ml最差,因此建議,若使用Bio-Mix育苗,使用濃度以106cfu/ml為佳。
URI: http://hdl.handle.net/11455/89195
其他識別: U0005-2811201416190609
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:園藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101032010-1.pdf2.97 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.