Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89227
標題: 鈣肥與芽孢桿菌處理對彩色海芋生長之影響
Effects of calcium and Bacillus spp. treatments on the growth of calla lily
作者: Jiun-Rung Shen
沈峻榮
關鍵字: 彩色海芋;鈣;芽孢桿菌;calla lily;calcium;Bacillus spp.
引用: 丁姵分. 2004. 番茄萎凋病之生物防治菌的鑑定與防病潛力評估. 國立中興大學植物病理學研究所碩士論文. 林巽智. 1997. 彩色海芋結球及種球貯藏之研究. 國立台灣大學園藝學研究所碩士論文. 李一芸. 1994. 台灣彩色海芋細菌性軟腐病之研究. 國立中興大學植物病理學研究所碩士論文. 李秉城. 2006. 詩情畫「芋」浪漫海芋季. 台灣花卉園藝月刊 226:52-53. 何陽修、劉明宗、陳駿季、沈再發. 2000. 海芋栽培技術手冊. 農委會種苗改良繁殖場出版. 林祖盛. 1997. 彩色海芋種薯細菌性軟腐病之研究. 國立中興大學植物病理學研究所碩士論文. 柯勇. 2002. 植物的礦物營養. 植物生理學. p. 105-144. 高景輝. 2011. 植物賀爾蒙生理. 台北. p. 46. 陳和緯. 2008. Bacillus mycoides、水楊酸類似物及harpin蛋白對萵苣幼苗生長及抗病反應的效果. 國立中興大學植物病理學研究所碩士論文. 陳和緯、林盈宏、黃振文、張碧芳. 2010. Bacillus mycoides CHT2402對萵苣幼苗生長之影響. Plant Pathology Bulletin 19:157-165. 陳俊位、林俊義. 2000. 彩色海芋細菌性軟腐病防治方法之探討. 植物病理學會刊 9:107-114. 陳俊位. 2011. 鏈黴菌在農業上之應用. 台中區農業改良場特刊 111:113-118. 張治國. 2006. 彩色海芋產業概況. 種苗科技專訊54: 9-18. 張哲周. 2008. 植物營養學. 五南圖書出版股份有限公司. 台北. p. 123. 張郁靈. 2011. 番茄內生性細菌Bacillus cereus之特性分析與其對青枯病之影響. 國立中興大學植物病理學研究所碩士論文. Adams, P., L. C. Ho. 1993. Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant and Soil. 154:127-132. Ao, Y., M. Sun, and Y. Li. 2008. Effect of organic substrates on available elemental contents in nutrient solution. Bioresour. Technol. 99:5006-5010. Asaka, O. and M. Shoda. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081. Audenaert, K., T. Pattery, P. Cornelis, and M. Hofte. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol. Plant. Microbe In. 15. 1147-1156. Bai, J. G., P. L. Xu, C. S. Zong, and C. Y. Wang. 2009. Effects of exogenous calcium on some postharvest characteristics of cut gladiolus. ASC 8:293-303. Bangerth, F. 1976. A role of auxin and auxin transport inhibitors on the Ca content of artificially induced parthenocarpic fruits. Physiol. plant. 37:191-194. Barber, S.A. 1966. The role of root interception, mass flow and diffusion in regulating the uptake of ions by plants from soil. Technical Report Series–IAEA 65:39-45. Baz, M., D. Lahbabi, S. Samri, F. Val, G. Hamelin, I. Madore, K. Bouarab, C. Beaulieu, M. M. Ennaji, and M. Barakate. 2012. Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates. World J. Microb. Biot. 28:303-311. Bhat, K. A., S. D. Masood, N. A. Bhat, M. A. Bhat, S. M. Razvi, M. R. Mir, S. Akhtar, N. Wani, and M. Habib. 2010. Current status of post harvest soft rot in vegetables: a review. Asian J. Plant Sci. 9:200-208. Blamey, F. P. C. 2003. A role for pectin in the control of cell expansion. Soil Sci. Plant Nutr. 49:775-783. Blom, T. J. and W. Brown. 1999. Preplant copper-based compounds reduce Erwinia soft rot on calla lilies. HortTechnology 9:56-59. Bussler, W. 1963. Die Entwicklung von calcium-mangelsymptomen. Z. Pflanzenernaehrung Bodenkunde 100:53-58. Clark, C. J. and H. L. Boldingh. 1991. Biomass and mineral nutrient partitioning in relation to seasonal growth of Zantedeschia. Sci. Hort. 47:125-135. Cho, H. R., H. Y. Joung, Ki-Byung Lim, and K. S. Kim. 2013. Effect of calcium and silicate application on pathogenicity of Erwinia carotovora subsp. carotovora in Zantedeschia spp. Hort. Environ. Biotechnol. 54:364-371. Cho, H. R., J. H. Lim, K. J. Yun, R. C. Snijder, D. H. Goo, H. K. Rhee, K. S. Kim, H. Y. Joung, and Y. J. Kirn. 2005. Virulence variation in 20 isolates of Erwinia caroto¬vora subsp. Carotovora on Zantedeschia cultivars in Korea. Acta Hortic. 673:653-659. Choudhary, D. K. and B. N. Johri. 2008. Interactions of Bacillus spp. and plants - with special reference to induced systemic resistance (ISR). Microbiol Res. 164:493-513. Cladera-Olivera, F., G. R. Caron, and A. Brandelli. 2004. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 38:251-256. Cladera-Olivera, F., G. R. Caron, A. S. Motta, A. A. Souto and A. Brandelli. 2006. Bacteriocin-like substance inhibits potato soft rot caused by Erwinia carotovora. Can. J. Microbiol. 52:533–539. Cole, C. V., S. R. Olsen, and C. O. Scott. 1953. The nature of phosphate sorption by calcium carbonate. Soil Sci. Soc. Am. Proc. 17:352-356. Collins, D. P. and B. J. Jacobsen. 2003. Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biological Control 26:153-161. Corr, B. E. 1993. Zantedeschia research in the United States, pastpresent and future. Acta Hortic. 337: 177-187. Cosgrove, D. J. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6:850–861. Dayod, M., S. D. Tyerman, R. A. Leigh, and M. Gilliham. 2010. Calcium storage in plants and the implications for calcium biofortification. Protoplasma. 247:215-231. Doblin, M. S., F. Pettolino, and A. Bacic. 2010. Plant cell walls: the skeleton of the plant world. Funct. Plant Biol. 37:357-381. Fiori, M. and A. Schiaffino. 2004. Bacterial stem rot in greenhouse pepper (Capsicum annuum L.) in Sardinia (Italy): Occurrence of Erwinia carotovora subsp. carotovora. J. Phytopathol. 152:28-33. Ferguson, I. B. and C. B. Watkins. 1989. Bitter pit in Apple Fruit. Horticultural Reviews 11:289-338. Ferguson, I. B. 1984. Calcium in plant senescence and fruit ripening. Plant, Cell & Environment 7:477-489. Fenn, L. B., R. M. Taylor, and J. E. Matocha. 1981. Ammonia losses from surface-applied nitrogen fertilizer as controlled by soluble calcium and magnesium: general theory. Soil Sci. Soc. Am. J. 45:777-781. Fugua, C., S. Winans, and E. Greenberg. 1996. Census and consensus in bacterial ecosystems the LuxR-LuxI family of quorum sensing transcriptional regulator. Annu. Rev. Microbiol. 50:727-751. Funnell, K. A. and B. R. MacKay 1999. Directions and challenges of the New Zealand calla industry, and the use of calcium to control soft rot. In: Sheen T. F., J. J. Chen, T. C. Yang, and M. C. Liu (eds). The International Symposium on Developmentof Bulbous Flower Industry p. 30-44 TSIPS, Taiwan. Gardener, B. B. M. and D. Drikes. 2004. Overview of the nature and application of biocontrol microbes: Bacillus spp. Phytopathology 94:1244. Glass. A. D. M. 1983. Regulation of ion transport. Annu. Rev. Plant Physiol. 34:311-326. Griffin, R. A. and J. J. Jurinak. 1973. The interaction of phosphate with calcite. Soil Sci. Soc. Am. Proc. 37:847-850. Guetsky, R., D. Shtienberg, Y. Elad, E. Fischer, and A. Dinoor. 2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. APS. 92:976-985. Hadas, R., G. Kritzman, T. Gefenand, and S. Manulis. 2001. Detection, quantification and characterization of Erwinia carotovora spp. Carotovora contaminating pepper seeds. Plant Pathol. 50:117-123. Hegde, D. M. 1988. Irrigation and nitrogen requirement of bell pepper. Indian J. Agric. Sci. 58:668-672. Holford, I. C. R. and G. E. G. Mattingly. 1975. Phosphate sorption by jurassic oolitic limestones. Geoderma 13:257-264. Horta, H. 1994. Occurrence of bacterial soft rot of calla incited by Erwinia carotovora subsp. Carotovora in Hokkaido Prefecture. Ann. Rep. Soc. Plant Prot. North Jpn. 45:100-103. Hwang, S. F. and P. Chakravarty. 1992. Potential for the integrated control of rhizoctonia root-rot of Pisum sativum using Bacillus subtilis and a fungicide. J. Plant Dis. Prot. 99:626-636. Jakobsen. S. T. 1993. Interaction between plant nutrients: III. Antagonism between potassium, magnesium and calcium. Acta Agriculturae Scandinavica, Section B - Soil and Plant Science 43:1-5 Jarvis, M. C. and D. C. Apperley. 1995. Chain conformation in concentrated pectic gels: evidence from 13C NMR. Carbohydr. Res. 275:131-145. Jiaqin, F., G. Qian, X. Yang, C. Gu, Y. Kang, Y. Ma, B. Hu, and F. Liu. 2011.Biocontrol of bacterial soft rot of calla lily by elicitor HarpinXoo and N-acyl homoserinelactonase (AttM). World J. Microbiol. Biotechnol. 27:401-410. Jones, J. B., A. R. Chase, and G. K. Harris. 1993. Evaluation of the biolog GN micro plate system for identification of some plantpathogenic bacteria. Plant Dis. 77:553-558. Kamal, A. M. A, A. D. A. Allam, M. A. Sallam, and M. H. A. Hassan. 2010. Role of certain potato tubers constituents in their resistance to bacterial soft rot caused by Erwinia carotovora spp. carotovora. Arch. Phytopathol. Pfl. 43:1190-1197. Kelman, A., R. G. McGuire, and K. C. Tzeng. 1989. Reducing the severity of bacterial soft rot byincreasing the concentration of calcium in potato tubers. p.102-123 In: Engelhard, A. W. (ed.). Soilborne Plant Pathogens : Management of Disease with Macro and Micro elements APS Press, The American Phytopathological Society, St. Paul, MN. Kikumoto, T. 2000. Ecology and biocontrol of soft rot of Chinese cabbage. J Gen. Plant Pathol. 66:275-277. Kloepper, J. W., C. M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. Korsten, L., E. E. De Villiers, F. C. Wehner, and J. M. Kotze. 1997. Field sprays of Bacillus subtilis and Fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Disease 81:455-459. Kuehny, J. S. 2000. Calla history and culture. HortTechnology 10:267-274. Kuehny, J. S., G. E. Holcomb, W. C. Chang, and P. Branch. 1998. Chemical treatments to control Erwinia soft rot of calla rhizomes. Hort Technology 8:353-356. Lambert, D. H. and F. E. Manzer. 1991. Relationship of calcium to potato scab. Phytopathology 81:632-636. Li, Y., T. Wang, J. Li, and Y. Ao. 2010. Effect of phosphorus on celery growth and nutrient uptake under different calcium and magnesium levels in substrate culture. Hortic. Sci. 37:99-108. Liao, C. H. 2009. Control of foodborne pathogens and soft-rot bacteria on bell pepper by three strains of bacterial antagonists. J. Food Protect 72:85-92. Liu, W., D. Zhu, D. Liu, X. Lu, and M. Geng. 2010. Comparative metabolic activity related to flavonoid synthesis in leaves and flowers of Chrysanthemum morifolium in response to K deficiency. Plant Soil 335:325-337. Liu, W., D. W. Zhu, D. H. Liu, W. B. Zhou, T. W. Yang, and M. J. Geng. 2011. Influence of potassium deficiency on flower yield and flavonoid metabolism in leaves of Chrysanthemum morifolium Ramat. J. Plant Nutr. 34:1905-1918. Locascio, S. J., J. A. Bartz, and D. P. Weingartner, 1991. Potato yield and soft rot potential as influenced by calcium and potassium fertilization. Proc. Fla. State Hort. Soc.104:248-253. Loper, J., M. D. Henkels, R. G. Roberts, G. C. Grove, M. J. Willett, and T. J. Smith. 1991. Evaluation of streptomycin, oxytetracycline, and copper resistance of Erwinia amylovora isolated from pear orchards in Washington State. Plant Dis. 75:287-290. Maathuis, F. J. M. and D. Sanders. 1994. Mechanism of high affinity potassium uptake in roots of Arabidopsis thaliana. PNAS. 91:9272-9276. Maathuis, F. J. M., A. M. Ichida, D. Sanders, and J. I. Schroeder. 1997. Roles of higher plant K+-channel. Plant Physiol. 114:1141-1149. Maathuis, F. J. M. and D. Sanders. 1995. Contrasting roles in ion transport of two K+-channel types in root cells of Arabidopsis thaliana. Planta 197:456-464. Mancino, C. F. and J. Troll. 1990. Nitrate and ammonium leaching losses from N fertilizers applied to 'Penncross' creeping bentgrass. HortScience 25:194-196. Marcelis, L. F. M. and L. C. Ho. 1999. Blossom-end rot in relation to growth rate and calcium content in fruits of sweet pepper (Capsicum annuum L.). Journal of Experimental Botany. 50:357-363. Mariani, P., L. Navazio, and A. Zuppini. 2003. Calreticulin and the endoplasmic reticulum in plant cell biology. Molecular Biology Intelligence Unit p. 94-104. Medina, E.,C. Paredes, M. D. Perez-Murcia, M. A. Bustamante, and R. Moral. 2009. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 100:4227-4232. Mengel, K., H. M. H. Helal. 1967. The influence of the exchangeable Ca2+ of young barley roots on the fluxes of K and phosphate–an interpretation of the viets effect. Z. Pflanzenphysiol. 57.223-234. Miller, M. B. and B. R. Bassler. 2001. Quorum sensing in bacteria. Ann. Rev. Microbi. 55:165-199. Mohamedin, A. H. and H. H. Badr. 2011. Purification and identification of an antibacterial metabolite produced by the biocontrol agent, Streptomyces sioyaensis suppressing Erwinia carotovora the causative of potato soft rot. Egypt. J. Biol. Pest. Control. 21:185-188. Mohnen, D. 1999. Biosynthesis of pectins and galactomannans. In: D. Barton, K. Nakanishi and O. Meth-Cohn (Eds.) Comprehensive Natural Products Chemistry 3:497-527. Elsevier Science, Amsterdam. Mohnen, D. 2008. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11:266-277. Morris, E. R., D. A. Powell, M. J. Gidley, and D. A. Rees. 1982. Conformations and interactions of pectins. J. Mol. Biol. 155:507-516. O' Neill, M. A., P. Albersheim, and A. Darvill. 1990. The pectic polysaccharides of primary cell walls. In: P.M. Dey (Ed.) Methods in Plant Biochemistry 2:415-441. Academic Press, London. Perombelon, M. C. M. 2002. Potato diseases caused by soft rot erwinias : an overview of pathogenesis. Plant Pathol. 51:1-12. Perombelon, M. C. M. and Burnett, E. M. 1991. Two modified crystal violet pectate (CVP) media for the detection, isolation and enumeration of soft rot erwinias. Potato Res. 34:79-85. Pirhonen, M., D. Flego, R. Heikinheimo, and E. T. Palva. 1993. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12:2467-2476. Poovaiah, B. W. 1988. Molecular and cellular aspecs of calcium action in plants. HortScience 23:267-271. Raghothama, K. G. 2005. Phosphorus and plant nutrition: An Overview. p. 355-378. In: J. T. Sims and A. N. Sharrpley (eds.) Phosphorus: Agriculture and the Environment. Agronomy Monograph 46, Madison, WI. Robinson, A., C. J. Clark, and J. Clemens. 2000. Using 1H magnetic resonance imaging and complementary analytical techniques to characterize developmental changes in the Zantedeschia Spreng. tuber. J. Exp. Bot. 51:2009-2020. Romero, F. R., R. J. Gladon, and H. G. Taber. 2007. Effect of excessive calcium applications on growth and postharvest performance of bedding-plant impatiens. J. Plant Nutr. 30: 1639-1649. Roth-Bejerano, N. and A. Nejidat. 1987. Phytochrome effects on K fluxes in guard cells of Commelina communis. Physiol. Plant 71:345-351. Schlieman, D., 2009. Soil pH & phosphorus nutrients. MVTL Newsletter. p. 1-2. Schwertmann, U., P. Susser, and L. Natscher. 1987. Proton buffer compounds in soils. Z. Pflanzenernahr Bodenk 150:174-178. Seling, S., A. H. Wissemeier, P. Cambier, and P. van Cutsem. 2000. Calcium deficiency in potato (Solanum tuberosum ssp. tuberosum) leaves and its effects on the pectic composition of apoplastic fluid. Physiol. Plant 109:44-50. Shoji, T. 1991. Import of calcium by tomato fruit in relation to the day-night periodicity. Sci. Hort. 45:235-243. Silo-suh, L. A., B. J. Lethbridge, S. J. Raffel, H. He, J. Clardy, and J. Handelsman. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60:2023-2030. Schachtman, D. P., R. J. Reid, and S. M. Ayling. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116:447-453. Taylor, M. D. and S. J. Locascio. 2004. Blossom-End Rot: A Calcium Deficiency. Journal of Plant Nutrition. 27:123-139. Turner, J. T. and P. A. Backman. 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75:347-353. Shams, M., N. Etemadi, B. Baninasab, A. A. Ramin, and A. H. Khoshgoftarmanesh. 2012. Effect of boron and calcium on growth and quality of 'easy lover' cut rose. J. Plant Nutr. 35:1303-1313. Surang, C., S. Hongvijit, A. Srichaisupakit, P. Charnchai, and W. Panbangred. 2013. Endophytic actinomycetes: a novel source of potential acyl-Homoserine lactone degrading enzymes. Biomed. Res. Int. 2013:1-8. Tang, S., W. Shi, H. Wang, and A. Luo. 2007. Effect of calcium on cyclamen pedicel elongation. J. Plant Nutr. Soil Sci. 170:664-668. Ulrich, R. L. 2004. Quorum quenching enzymatic disruption of N-acylhomoserine lactone mediated bacterial communication in Burkholderia thailandensis. Appl. Environ. Microbiol. 70:6173-6180. Viest, F. G. 1994. Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots. Plant physiol. 19:466-480. Virk, S. S., R. E. Cleland. 1988. Calcium and mechanical properties of soybean hypocotyl cell walls: possible role of calcium and protons in cell wall loosening. Planta 176:60-67. Wegener, B. C. 2002. Induction of defence responses against Erwinia soft rot by an endogenous pectatelyase in potatos. Physiol. Mol. Plant Pathol. 60:91-100. White, P. J. and M. R. Broadley, 2003. Calcium in plants. Ann Bot 92:487-511. Willats, W. G. T., L. McCartney, L. Mackie, and J. P. Knox. 2001. Pectin: cell biology and prospects for functional analysis. Plant Mol. Biol. 47:9-27. Wright, P. J. 1998. A soft rot of calla (Zantedeschia spp.) caused by Erwinia carotovora subsp. carotovora. N. Z. J. Crop. Hort. 26:331-334. Wright, P. J. and Burge, G. K. 2000. Irrigation, sawdust mulch, and EnhanceR biocide affects soft rot incidence, and flower and tuber production of calla. N. Z. J. Crop Hort. Sci. 28:225-231. Wright, P. J. and G. E. Clark. 2005. Growing methods and chemical drenches control calla soft rot. Acta Hortic. 673:768-774. Wright, P. J. and C. M. Triggs. 1997. Calcium fertilisation reduces incidence of soft rot (Erwinia carotovora) on potato tubers. In Proceedings of the New Zwaland Plant Protection Conference (p. 535-535). N. Z. Plant Prot. Soc. Inc. Yancun, Z., P. Li, K. Huang, Y. Wang, H. Hu, and Y. Sun. 2013. Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action. World J. Microb. Biot. 29:411-420. http://agrstat.coa.gov.tw/sdweb/public/trade/tradereport.aspx 行政院農委會農業統計資料庫. 台灣花卉農產品進出口調查. 2014. 01. 18查詢. http://amis.afa.gov.tw/coop/f_commonlink.htm批發市場共同運銷網. 調查國內市場切花運銷價格變化. 2014. 01. 18查詢. http://web.customs.gov.tw/mp.asp?mp=1財政部關務署網站. 近十年台灣切花外銷種類與數量調查. 2014. 01. 18查詢. http://www.maff.go.jp/j/tokei/index.html日本農林水產省植物防疫所植物檢疫統計. 近六年彩色海芋輸日國家調查. 2014. 01. 18查詢.
摘要: 
The goal of this research was to study the effects of four types Ca amendment as well as Bacillus spp. on the growth of cut flower and bulb harvested of calla lily with special concern about the prevention of soft rot disease. Four types of calcium used were: Ca(NO3)2,CaSO4,Ca(OH)2 and CaCO3. Bacillus subtilis and Bacillus mycoides were the two Bacillus tested in this experiment. Supplemented calcium fertilizers were applied to calla lily 'Pot of Gold' by either pre-flower or post-flower application. There was no difference to the plant mineral contents between treatments for post-flower application. For pre-flower application, cut flower quality were better with Ca amendment, and Ca contents in leaf, petiole and the skin of bulb lower part were all increased by Ca amendment. Ca amendment also found to increase layers of bulb epidermal cell, raised calcium in bulb skin, which would be increasing cell wall integrity and reduce the chance of mechanical injury. And that supposed to lower soft rot disease occurrence. We also found the effects of Ca to the flower only occurred on the treated season, there is no remaining influence for next year cut flower production.
Two commercial PGPR (Plant Growth-Promoting Rhizobacteria) BS1(B. subtilis) and BM3(B. mycoides) were mixed with growing media for calla lily cultivation. Both B. subtilis and B. mycoides were increased the size of calla lily root system, and the petioles were longer for Bacillus treated plants. Fresh weight and dry weight as well as starch contents of the bulbs were higher from Bacillus treated plants. For BM3 treated plants, B. mycoides were only found in the tissue of roots and bulbs. No Bacillus mycoides colony could be found for leaf or petiole tissue culture from BM3 treated plants. It shows that the Bacillus were restricted within underground of calla lily.

本研究目標為探討施用鈣肥Ca(NO3)2、CaSO4、Ca(OH)2或CaCO3等以及枯草桿菌Bacillus subtilis或蕈狀芽孢桿菌Bacillus mycodies對彩色海芋生長及抑制細菌性軟腐病之影響。以彩色海芋'Pot of Gold'為試驗材料,分別在開花前以及開花後進行添加鈣肥試驗,在開花後施用鈣肥對彩色海芋植體營養元素的含量影響很小,而在開花前施用鈣肥,其切花品質皆會比對照組佳,而且能增加葉片、葉柄以及地下部塊根莖底部表皮的鈣含量。在塊根莖的切片鏡檢中,有鈣肥處理的塊根莖其表皮的細胞層數會多於對照組,因此可增加表皮鈣含量,可能可以增加塊根莖的細胞壁完整性以及物理防禦性,減少因機械傷害或碰撞而產生傷口,而減少軟腐的發病率。進一步試驗探討鈣肥處理對於次年切花品質之影響,可以得出鈣肥處理主要還是以影響當季為主,對於下一季的切花品質並沒有影響。
分別使用枯草桿菌B. subtilis商品BS1以及蕈狀芽孢桿菌B. mycodies商品BM3等植物生長促進根圈菌(Plant Growth-Promoting Rhizobacteria;PGPR)與栽培介質混拌進行栽種,這兩種細菌皆屬於芽孢桿菌屬細菌,不過最主要差別是在於B. subtilis具有能夠抑制軟腐細菌生長的能力,而B. mycodies是屬於內生性細菌,能夠在植物體內與之共生。B. subtilis與B. mycodies皆有促進植物生長的效果,試驗亦證實能促使彩色海芋根系增多,且葉柄的長度會比較長。塊根莖的鮮乾重以及澱粉含量也會比較多。另外,這個試驗也觀察到以BM3處理的植株根系以及塊根莖才有B. mycodies菌落的出現,然而在葉柄以及葉片並沒有出現菌落,顯示Bacillus mycodies可能沒辦法藉由植物蒸散流隨水份移行至地上部,或是以本試驗中的處理方式沒辦法使其分散於植株各處。而在軟腐病抑制試驗中,對照組與處理組發病率皆過低,顯示試驗的接種方式與濃度仍須在進一步研擬。
URI: http://hdl.handle.net/11455/89227
其他識別: U0005-0602201416362300
Rights: 同意授權瀏覽/列印電子全文服務,2017-02-07起公開。
Appears in Collections:園藝學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100032010-1.pdf10.24 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.