Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89243
DC FieldValueLanguage
dc.contributor顏江河zh_TW
dc.contributor.authorTzu-Chao Linen_US
dc.contributor.author林子超zh_TW
dc.contributor.other森林學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-07T07:00:42Z-
dc.identifier.citation文紀鑾、張喜寧 (1995) 溫度與繡球屬菌根對組織培養非洲菊生長與切花品質之影響。國立台灣大學農學院報告 35:75-91。 朱先燦、宋鳯斌 (2009) 植物菌根共生磷酸鹽轉運蛋白。中國生物工程雜誌 29(12): 108-113。 朱君逸、李明仁 (2004) 囊叢枝菌根菌Acaulospora scrobiculata對黃槿苗木生長之效應。中華林學季刊 37:21-31。 呂斯文、張喜寧 (1998) 菌根菌與土壤微生物之交互作用。科學農業 46:217- 225。 杜金池、程永雄 (1990) 接種內生菌根菌開發洋香瓜宿根栽培,獲得成功。豐年 40:22-25。 林子超、朱恩良、李苑瑋、顏江河 (2013) 陽明山火山噴氣口鄰近土壤與內生菌根菌調查。林業研究季刊 35(4):241-252。 林子超、吳繼光 (2007) 九二一地震後九九峰地區先驅樹種內生菌根菌調查研究。特有生物研究 9(1):51-62。 林子超、顏江河 (2010) 台灣西部海岸林適生植物內生菌根菌調查研究。林業研究季刊 32(4):23-34。 林素禎、洪崑煌、吳繼光 (2000) 囊叢枝內生菌根菌在臺灣代表性土壤中之分布。中華農業研究 49(4):65-80。 胡弘道 (1978) 內生菌根孢子接種對紅檜幼苗生長之影響。科學發展月刊 6 (11):1064-1077。 陳益明、郭城孟 (1989) 陽明山國家公園區內火山植物生態之研究。內政部營建署陽明山國家公園研究報告。159pp. 陳健忠、張喜寧 (1997) 叢枝菌根對寄主植物磷吸收之影響。中國園藝43(3): 175-181。 陳明哲 (1976) 大屯山區植群生態之研究。國立台灣大學森林研究所碩士論文。 劉棠瑞、蘇鴻傑(1989)森林植物生態學。臺灣商務印書館。共462頁。 顏江河、林哲毅(2002)兩種土壤中接種菌根菌對大頭茶苗木的生長效應。林業研究季刊 24(1):45-52。 Angelard, C., A. Colard, H. Niculita-Hirzel, D. Croll and I. R. Sanders (2010) Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Current Biology 20: 1216-1221. Bago, B., P. E. Pfeffer and Y. Shachar-Hill (2002) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology 124: 949-958. Balestrini, R. and L. Lanfranco (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16: 509-524. Barnhisel, R. and P. M. Bertsch (1982) Aluminum. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9: 275- 300. Beiler, K. J., D. M. Durall, S. W. Simard, S. A. Maxwell and A. M. Kretzer (2010) Architecture of the wood-wide web: Rhizopogon spp. Genets link multiple Douglas-fir cohorts. New Phytologist 185: 543-553. Błaszkowski, J., M. Tadych and T. Madej (2000) Glomus minutum, a new species in Glomales (Zygomycetes) from Poland. Mycotaxon 76: 187-196. Bustin, S. A. (2002) Quantification of mRNA using real-time reverse transcription PCRRT-PCR: Trends and problems. Journal of Molecular Endocrinology 29: 23-39. Carr, G. R., M. A. Hinkley, F. Le Tacon, C. M. Hepper, M. G. K. Jones and E. Thomas (1985) Improved hyphal growth of two species of vesicular-arbuscular mycorrhizal fungi in the presence of suspension- cultured plant cells. New Phytologist 101 : 417-426. Carvalho, L., P. Correia, R. Ryel and M. Martins-Loucao (2003) Spatial variability of arbuscular mycorrhizal fungal spores in two natural plant communities. Plant and Soil 251: 227-236. Chang, D. C. N. (1996) The use of arbuscular mycorrhiza (AM) fungi for horticultural crops. Food and Fertilizer Technology Center Technical Bulletin 144: 1-7. Chen, A. Q., J. Hu, S. B. Sun and G. H. Xu (2007) Conservation and divergence of both phosphate – and mycorrhiza – regulated physiological responses and expression patterns of phosphate transporters in Solanaceous species. New Phytologist 173: 817-831. Clapp, J. P., A. Rodriguez and J. C. Dodd (2001) Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytologist 149: 539-554. Colard, A., C. Angelard and I. R. Sanders (2011) Genetic exchange in an arbuscular mycorrhizal fungus results in increased rice growth and altered mycorrhiza-specific gene transcription. Applied and Environmental Microbiology 77: 6510-6515. Croll, D., L. Wille, H. A. Gamper, N. Mathimaran, P. J. Lammers, N. Corradi and I. R. Sanders (2008) Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 178 : 672-687. Daniell, T. J., A. Hodge, J. P. W. Young and A. Fitter (1999) How many fungi does it take to change a plant community. Trends in Plant Science 4: 81-82. Daniell, T. J., R. Husband, A. H. Fitter and J. P. W. Young (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology 36: 203-209. Daniels, B. A. and H. D. Skipper (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Methods and principles of mycorrhizal research, Schenck, N. C. (Ed.). The American Phytopathological Society, Staint Paul pp. 20-45. Dheda, K., J. F. Huggett, S. A. Bustin, M. A. Johnson, G. Rook and A. Zumla (2004) Validation of housekeeping genes for normalizing RNA expression in realtime PCR. Biotechniques 37: 112-119. Díaz, G. and M. Honrubia (1995) Effect of native and introduced arbuscular mycorrhizal fungi on growth and nutrient uptake of Lygeum spartum and Anthyllis cytisoides. Biologia Plantarum 37 : 121-129. Donnison, L. M., G. S. Griffith, J. Hedger, P. J. Hobbs and R. D. Bardgett (2000) Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and Wales. Soil Biology and Biochemistry 32: 253-263. Douds, D. D. and N. C. Schenck (1990) Increased sporulation of vesicular- arbuscular mycorrhizal fungi by manipulation of nutrient regimens. Applied and Environmental Microbiology 56:413-418. Elias, K. E. and G. R. Safir (1987) Hyphal elongation of Glomus fasciculatus in response to root exudates. Applied Environmental Microbiology 53: 1928-1933. Enkhtuya, B., J. Rydlová and M. Vosátka (2000) Effectiveness of indigenous and non-indigenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and man-made habitats. Applied Soil Ecology 14:201-211. Entry, J. A., C. L. Rose, and K. Cromack (1992) Microbial biomass and nutrient conceptions in hyphal mats of ectomycorrhizal fungus Hysterangium setchellii in a coniferous forest soil. Soil Biology and Biochemistry 24: 447- 453. Eom, A. H., D. C. Hartnett and G. W. T. Wilson (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122: 435-444. Ezawa, T., S. E. Smith and F. A. Smith (2001) Differentiation of polyphosphate metabolism between the extra – and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist 149: 555-563. Feddermann, N., R. Finlay, T. Boller and M. Elfstrand (2010) Functional diversity in arbuscular mycorrhiza - the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology 3: 1-8. Friese, C. and R. Koske (1991) The spatial dispersion of spores of vesicular-arbuscular mycorrhizal fungi in a sand dune: microscale patterns associated with the root architecture of American beachgrass. Mycological Research 95(8): 952-957. Fujiyoshi, M., A. Kagawa, T. Nakatsubo and T. Masuzawa (2005) Successional changes in mycorrhizal type in the pioneer plant communities of a subalpine volcanic desert on Mt. Fuji, Japan. Polar Bioscience 18: 60-72. Gao, L. L., W. Knogge, G. Delp, F. A. Smith and S. E. Smith (2004) Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza-defective mutant tomato. Molecular Plant-Microbe Interactions 17: 1103-1113. Gauch, H. G. (1982) Multivariate Analysis in Community Ecology. Cambridge University Press, London. 298 pp. Gavito, M. E., D. Pérez-Castillo, C. F. González-Monterrubio, T. Vieyra-Hernández and M. Martínez-Trujillo (2008) High compatibility between arbuscular mycorrhizal fungal communities and seedlings of different land use types in a tropical dry ecosystem. Mycorrhiza 19: 47–60. Gerdemann, J. W. and J. M. Trappe (1974) The Endogonaceae in the Pacific Northwest. Mycologia Memoir 5: 76. Gollotte, A., D. Van Tuinen and D. Atkinson (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14: 111-117. Gomez, S. K., H. Javot, P. Deewatthanawong , I. Torres-Jerez , Y. Tang, E. B. Blancaflor, M. K. Udvardi and M. J. Harrison (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biology 9: 10. Govindarajulu, M., P. E. Pfeffer, H. R. Jin, J. Abubaker, D. D. Douds and J. W. Allen (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435: 819-823. Grunwald, U., W. B. Guo, K. Fischer, S. Isayenkov, J. Ludwig-Müller, B. Hause, X. Yan, H. Küster and P. Franken (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone –treated Medicago truncatula roots. Planta 229: 1023-1034. Hankan, W. and W. Tonie (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9: 25- 32. Harrison, M. J. and M. L. Buuren (1995) A phosphate transporter from the mycorrhizal fungu Glomus versiforme. Nature 378: 626-632. Harrison, M. J., G. R. Dewbre and J. Liu (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 2413-2429. Hart, M. M. and R. J. Reader (2004) Do arbuscular mycorrhizal fungi recover from disturbance differently? Tropical Ecology 45: 97-111. Hart, M. M., R. J. Reader and J. N. Klironomos (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends in Ecology and Evolution 18: 418-423. Hartnett, D. C. and G. W. T. Wilson (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80: 1187-1195. Helgason, T., J. W. Merryweather, J. Denison, P. Wilson, J. P. W. Young and A. H. Fitter (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. Journal of Ecology 90: 371-384. Helm, D. J., E. B. Allen and J. M. Trappe (1996) Mycorrhizal chronosequence near Exit Glacier, Alaska. Canadian Journal of Botany 74(9): 1496-1506. Hepper, C. M. (1983) Effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytologist 92: 389-399. Hetrick, B. A. C. and J. Bloom (1986) The influence of host plant on production ability of vesicular-arbuscular mycorrhizal spores. Mycologia 78: 32-36. Hodge, A. (2000) Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiology Ecology 32: 91-96. Huggett, J., K. Dheda, S. Bustin and A. Zumlaetal (2005) Real-time RT-PCR normalization; strategies and consideration. Genes and Immunity 6(4): 279-284. Husband, R., E. A. Herre, S. L. Turner, R. Gallery and J. P. W. Young (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology 1:2669-2678. Javot, H., N. Pumplin and M. J. Harrison (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environment 30: 310-322. Jeffries, P., S. Gianinazzi, S. Perotto, K. Turnau and J. Barea (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils 7: 1-16. Johason, J. F., C. P. Vance and D. L. Allan (1996) Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenol pyruvate carboxylase. Plant Physiology 112: 31-41. Johnson, D., P. J. Vandenkoornhuyse, J. R. Leake, L. A. Gilbert, R. E. Booth, J. P. Grime, J. P. W. Young and D. J. Read (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist 161: 503-515. Kim, B. R., H. Y. Nam, S. U. Kim, S. I. Kim and Y. J. Chang (2003) Normalization of reverse transcription quantitative- PCR with housekeeping genes in rice. Biotechnology Letters 25: 1869-1872. Klironomos, J. N. (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292-2301. Klironomos, J. N. and M. M. Hart (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12: 181-184. Koide, R. T. (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist 117: 365–386. Koomen, I., C. Grace and D.S. Hayman (1987) Effectiveness of single and multiple mycorrhizal inocula on growth of clover and strawberry plants at two soil pHs. Soil Biology and Biochemistry 19:539–544. Koske, R. E. and B. Tessier (1983) A convenient, permanent slide mounting medium. Newsletter Mycological Society of America 34: 59. Koske, R. E. and J. N. Gemma (1990) VA mycorrhizae in strand vegetation of Hawaii : evidence for long-distance codispersal of plants and fungi. American Journal of Botany 77: 466-474. Krüger, M., C. Krüger, C. Walker, H. Stockinger and A. Schüßler (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytologist 193 : 970-984. Landis, F. C., A. Gargas and T. J. Givnish (2004) Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytologist 164: 493-504. Liu, C. M., U. S. Muchhal, M. Uthappa, A. K. Kononowicz and K. G. Raghothama (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiology 116: 91-99. Livak, K. J and T. D. Schmittgen (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods 25: 402-408. Lovelock, C. E., K. Andersen and J. B. Morton (2003) Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135: 268-279. MacDonald, D. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78. Maeda, D., K. Ashida, K. Iguchi, S. A. Chechetka, A. Hihikata, Y. Okusako, Y. Dequchi, K. Izui and S. Hata (2006) Knockdown of an arbuscular mycorrhiza – inducible phosphate gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiology 47: 807-817. Maillet, F., V. Poinsot, O. Andre, V. Puech-Page's, A. Haouy, M. Gueunier, L. Cromer, D. Giraudet, D. Formey, A. Niebel, E. A. Martinez, H. Driguez, G. Be'card and J. De'narie (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469: 58-63. Maldonado-Mendoza, I. E., G. R. Dewbre and M. J. Harrison (2001) A phosphate transporter from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Molecular Plant-Microbe Interactions 14: 1140-1148. Marschner, H. (1995) Mineral Nutrition of Higher Plants. Second Edition. Academic Press, London, UK. pp. 889. Masuzawa, T. and J. Suzuki (1991) Structure and succession of alpine perennial community (Polygonum cuspidatum) on Mt. Fuji. Proceedings of the NIPR Symposium on Polar Biology 4: 155-160. Matsumoto, L. S., A. M. Martines, M. A. Avanzi, U. B. Albino, C. B. Brasil, D. P. Saridakis, L. G. L. Rampazo, W. Zangaro and G. Andrade (2005) Interactions among functional groups in the cycling of, carbon, nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees. Applied Soil Ecology 28: 57-65. McCune, B. and J. B. Grace (2002) Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, USA. 300 pp. McLean, E. O. (1982) Soil pH and lime requirement. In: A. L. Page et al. (eds.) Methods of soil analysis. Part 2. Chemical and microbiological properties 2nd edition ASA. CSSA. SSSA. Madison, Wisconsin. Millner, P. D. and S. F. Wright (2002) Tools for support of ecological research on arbuscular mycorrhizal fungi. Symbiosis 33: 101-123. Miyawaki, A. (1971) Vegetation of Mt. Fuji. Fuhisan (Mt. Fuhi), Tokyo, Fuhi-Kyuko 665-721. Moore, P. D. and S. B. Chapman (1986) Methods in Plant Ecology. 2nded. Blackwell Scientific Publications. Oxford, London, Edinburgh. Moreira-Souza, M., S. F. Trufem, S. M. Gomes-da-Costa and E. J. Cardoso (2003) Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza 13: 211-215. Morton, J. B. and G. L. Benny (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): A new order, Glomales, two new sub-orders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37: 471-491. Muchhal, U. S., J. M. Pardo and K. G. Raghothama (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 93: 10519-10523. Nagy, R., V. Karandashov, V. Chague, K. Kalinkevich, M. Tamasloukht, G. Xu, I. Jakobsen, A. Levy, N. Amrhein and M. Bucher (2005) The characterization of novel mycorrhiza – specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in Solanaceous species. The Plant Journal 42: 236-250. Newman, E. I. (1988) Mycorrhizal links between plants: their functioning and ecological significance. Advances in Ecological Research 18: 243-271. O'Connor, P. J., S. E. Smith and E. A. Smith (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist 154: 209-218. Oehl, F., D. Schneider, E. Sieverding and C. A. Burga (2011a). Succession of arbuscular mycorrhizal communities in the foreland of the retreating Morteratsch glacier in the Central Alps. Pedobiologia 54: 321-331. Oehl, F., E. Sieverding, K. Ineichen, E. A. Ris, T. Boller and A. Wiemken (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist 165: 273-283. Oehl. F., G. A. Silva, B. T. Goto and E. Sieverding (2011b) Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116: 75-120. Olson, S. R. and L. E. Sommers (1982) Phosphorus. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9: 403- 427. Paszkowski, U. (2006) A journey through signaling in arbuscular mycorrhizal symbioses. New Phytologist 172: 35-46. Paszkowski, U., S. Kroken, C. Roux and S. P. Briggs (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activates in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 99: 13324-13329. Paula, M. A. and J. O. Siqueira (1990) Stimulation of hyphal growth of the VA mycorrhizal fungus Gigaspora margarita by suspension-cultures Pueraria phaseoloides cells and cell products. New Phytologist 115: 69-75. Querejeta, J. I., L. M. Egerton-Warburton and M. F. Allen (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 34: 55- 64. Rausch, C. and M. Bucher (2002) Molecular mechanisms of phosphate transport in plants. Planta 216: 23-27. Rausch, C., P. Daram, S. Brunner, J. Jansa, M. Laloi, G. Leggewie, N. Amrhein and M. Bucher (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462-466. Read, D. J. and J. Perez-Moreno (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist 157: 475-492. Reinhardt, D. (2007) Programming good relations-development of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology 10: 98-105. Rhoades, J. D. (1982) Cation exchange capacity. In: A. L. Page et al. (eds.) Methods of soil analysis. Part 2. Chemical and microbiological properties 2nd edition ASA. CSSA. SSSA. Madison, Wisconsin. Roose, T. and A. C. Fowler (2004) A mathematical model for water and nutrient uptake by plant root systems. Journal of Theoretical Biology 228: 173-184. Safir, G. R., J. S. Boyer and J. W. Gerdemann (1971) Mycorrhizal enhancement of water transport in soybean. Science 172: 581-583. Saito, M., H. Oba, and T. Kojima (2011) Effect of nitrogen on the sporulation of arbuscular mycorrhizae fungi colonizing several gramineous plant species. Soil Science and Plant Nutrient 57: 29-34. Saito, M., and T. Marumoto (2002) Inoculation with arbuscular mycorrhizal fungi:The status quo in Japan and the future prospects. Plant Soil 244:273-279. Sasaki A., M. Fujiyoshi, S. Shidara and T. Nakatsubo (2001) Effects of nutrients and arbuscular mycorrhizal colonization on the growth of Salix gracilistyla seedling in a nutrient-poor fluvial bar. Ecological Research 16: 165-172. Schachtman, D. R., R. J. Reid and S. M. Ayling (1998) Phosphorus uptake by plants: From soil to cell. Plant physiology 116: 447-453. Schena, M., D. Shalon, R. W. Davis and P. O. Brown (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470. Schenck, N. C. and Y. Perez (1990) Mannual for the identification of VA mycorrhizal fungi. INVAM, Gainesville. Florida. Schüßler, A., D. Schwarzott and C. Walker (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105: 1413–1421. Shetty, K.G., B. A. Hetrick and A. P. Schwab (1995) Effects of mycorrhizae and fertilizer amendments on zinc tolerance of plants. Environmental Pollution 88: 307-14. Siqueira, J. O., M. A. C. Carneiro, N. Curi, S. C. S. Rosado and A. C. Davide (1998) Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in Southeastern Brazil. Forest Ecology and Management 107: 241-252. Smith S. E. and D. J. Read (1997) Mycorrhizal Symbiosis. 2nd ed., San Diego, Academic Press, 605 p. Smith, S. E. and S. J. Barker (2002) Plant phosphate transporter genes help harness the nutritional benefits of arbuscular mycorrhizal symbiosis. Trends in Plant Science 7: 189-190. Smith, S. E., F. A. Smith and I. Jakobsen (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133: 16-20. Smith, S. E., F. A. Smith and I. Jakobsen (2004) Functional diversity in arbuscular mycorrhizal (AM) symbiosis: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162: 511-524. Stover, H. J., R. G. Thorn, M. Bowles, M. A. Bowles, and C. R. Jacobs (2012) Arbuscular mycorrhizal fungi and vascular plant species abundance and community structure in tallgrass prairies with varying agricultural disturbance histories. Applied Soil Ecology 60: 61-70. Stürmer, S. L. and J. O. Siqueira (2011) Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza 21: 255-267. Stürmer, S. L. (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22: 247-258. Taylor, T. N., W. Remy, H. Hass and H. Kerp (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87: 560-573. ter Braak, C. J. F. and P. Šmilauer (1998) CANOCO Reference Manual and User's Guide to Canoco for Window: Software for Canonical Community ordination. (4 th ed.) Microcomputer Power, Ithaca. 345 pp. ter Braak, C. J. F. and P. Šmilauer (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination. Ithaca Press, New York. 500 pp. Teujimura, A. (1979) The arrangement of the vegetation of solfataras according to pH value of soils. Ecological Review 19(2): 59- 65. Thellin,O., W. Zorzi, B. Lakaye, B. De Borman, B. Coumans, G. Hennen, T. Grisar, A. Igout and E. Heinen (1999) Housekeeping genes as internal standards: use and limits. Journal of Biotechnology 75: 291-295. Titus, J. H. and S. Tsuyuzaki (2002) Arbuscular mycorrhizal distribution in relation to microsites on recent volcanic substrates of Mt. Koma, Hokkaido, Japan. Mycorrhiza 12: 271- 275. Tsuyuzaki, S., A. Hase and H. Niinuma (2005) Distribution of different mycorrhizal classes on Mount Koma, northern Japan. Mycorrhiza 15: 93- 100. Urcelay, C. and S. Díaz (2003) The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters 6: 388–391. Van der Heijden, M. G. A. and T. R. Horton (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Jolurnal of Ecology 97:1139-1150. Van der Heijden, M. G. A., T. Boller, A. Wiemken and I. R. Sanders (1998) Different arbuscular mycorrhizal fungi species are potential determinants of plant community structure. Ecology 79: 2082-2091. Vandenkoornhuyse, P. and C. Leyval (1998) SSU rDNA sequencing and PCR-fingerprinting reveal genetic variation within Glomus mosseae. Mycologia 90: 791-797. Vandenkoornhuyse, P., K. P. Ridgway, I. J. Watson, A. H. Fitter and J. P. W. Young (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology 12: 3085-3095. Vandenkoornhuyse, P., R. Husband, T. J. Daniell, I. J. Watson, A. H. Fitter and J. P. W. Young (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology 11: 1555-1564. Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3: 1-12. Wang, B. and Y. L. Qiu (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299-363. Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setälä, W. H. van der Putten and D. H. Wall (2004) Ecological linkages between aboveground and belowground biota. Science 304: 1629-1633. Weissenhorn, I., A. Glashoff, C. Leyval and J. Berthelin (1994) Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils. Plant Soil 167: 189-196. Yang, C., C. Hamel, M. P. Schellenberg, J. C. Perez and R. L. Berlbara (2010) Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in semiarid Grasslands National Park, Canada. Microbial Ecology 59: 724-733. Yoshioka, K. (1965) Solfatara vegetation at Osoreyama. Ecological Review 16(3): 137- 151. Zak, D. R., W. E. Holmes, D. C. White, A. D. Peacock and D. Tilman (2003) Plant diversity, soil microbial communities and ecosystem function: Are there any links? Ecology 84: 2042-2050. Zangaro, W., F. R. Nishidate, J. Vandresen, G. Andrade and M. A. Nogueira (2007) Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. Journal of Tropical Ecology 23: 53-62. Zangaro, W., V. R. L. Bononi and S. B. Trufen (2000) Mycorrhizal dependency, inoculum potential and habitat preference of native woody species in south Brazil. Journal of Tropical Ecology 16: 603-622.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/89243-
dc.description.abstract大屯火山群長年受到後火山作用之影響,形成特殊的土壤環境及獨特的硫磺區植群組成,部分區域土壤之pH值甚至僅2.6,土壤之全氮量為0.01%,土壤有效磷為2.49 mg kg-1,只有少數耐極酸性土壤之植物能自然生存其間。本研究針對該地區大油坑附近,進行土壤化學性質分析及叢枝菌根菌調查,目的在於瞭解菌根菌組成與土壤及植群間之關係,結果發現Entrophospora columbiana 及Glomus clarum為硫磺噴氣口白背芒 (Miscanthus sinensis var. glaber) 之主要共生菌種,然而隨著遠離噴氣口,其植相與共生之菌種多樣性也明顯地提升,共計發現有叢枝菌根菌7屬19種。此外,藉由裸土誘導繁殖試驗,發現距離植生較近的裸土中,仍然存在著菌根菌的繁殖體,且土壤中菌根菌的有無影響了白背芒是否可以在該地區存活。白背芒接種菌根試驗及植體的養分分析,証實大油坑地區的白背芒比南橫種源的白背芒有較高的發芽率,並且與大油坑地區的優勢菌根菌有較佳的共生效能。 大頭茶接種與菌根拓殖實驗,我們發現菌根菌在極酸土壤中能顯著促進大頭茶的生長,也更進一步證實白背芒的定植有助於叢枝菌根菌族群的建立,也連帶著幫助了後續植生在此棲地建立族群。叢枝菌根菌於不同性質土壤中對不同性質宿主之影響實驗,証實菌根菌對宿主植物沒有很高的專一性,土壤性質明顯影響了菌根菌能否與植物形成菌根,不同的植物與菌根菌均有其適生的土壤,但接種適當的菌根菌,就能有效改善植物於不適合生育地中生長狀況。白背芒磷酸鹽轉運蛋白基因表現實驗的結果發現白背芒與叢枝菌根菌共生後,由於叢枝菌根的菌絲網絡成了吸收和轉運磷過程中最主要的途徑,致使根部之磷酸鹽轉運蛋白基因表現呈下調的現象。zh_TW
dc.description.abstractTatun volcano group preserves particular soils environment and solfatara vegetation in phenomena of post-volcanism all the year round. The soils in part of this place are extremely acid, soil pH, nitrogen and available phosphorus contents are 2.6, 0.01 %, 2.49 mg kg-1 respectively. There are only some extreme acid-tolerable plant species can survive in this area. In this study, the soil chemical properties and arbuscular mycorrhizal fungi (AMF) composition were investigated to determine the relationship among them. We found that the main AMF symbiosis with Miscanthus sinensis var. glaber which predominate the fumarole are Entrophospora columbiana and Glomus clarum. The biodiversity of plants and AMF is increased with the distance from the Dayukeng fumarole, where 19 species in 7 genus were recorded. By means of bait culture in bare soil, there are still some propagules existed near the plants, which were related to the existence of Miscanthus sinensis var. glaber. In the AMF inoculation experiment, Miscanthus sinensis var. glaber from Dayukeng fumarole area revealed higher seeds generation rate and best symbiotic effect than those from Nanhen area. In the inoculation experiment of Gordonia axillaris, we demonstrated that AMF improve the nutrient availability of Gordonia axillaris in Dayukeng peculiar soil and corroborated that the existence of M. sinensis var. glaber is contributive to population establishment of AMF which help the successive plants to establish further. Inoculation experiment on different host plants and in distinct soil properties have been conducted. The result showed that AMF exhibit little host specificity but soil properties affect the synthesis of plant and fungi. Though different plants and AMF prefer living in different soil properties, but when the plants live in improper habitat, their growth could be improved by inoculating appropriate AMF. In the phosphorus transporter gene expression experiment, the gene expression in the root of M. sinensis var. glaber showed down-regulation, it implies that when M. sinensis var. glaber mycorrhized with AMF, the hyhpal system could play an important role for uptaking phosphorus.en_US
dc.description.tableofcontents第壹章、緒論 1 第貳章、大油坑硫磺噴氣口鄰近地區土壤與叢枝菌根菌調查 3 一、前言 3 二、前人研究 6 三、材料與方法 8 (一)研究區域氣候環境概述 8 (二)土壤取樣及化學性質分析 8 (三)菌種分離及鑑定 9 (四)季節性變化與植群類型對菌根菌組成之影響 9 (五)叢枝菌根菌組成與土壤因子間之分布序列分析 10 四、結果 11 (一)土壤化學性質 11 (二)硫磺噴氣口鄰近植被內生菌根組成 11 (三)菌根孢子組成季節性變化 19 (四)季節變化與植群類型對菌種組成與孢子數之影響 23 (五)叢枝菌根菌組成與土壤因子間之分布序列分析 23 (六)土壤中孢子數量及種數與土壤化學性質之相關性分析 25 五、討論 28 第參章、大油坑硫磺噴氣口鄰近區域菌根菌對植被組成之影響 30 一、前言 30 二、前人研究 32 三、材料與方法 34 (一)裸土誘導繁殖 34 (二)白背芒接種試驗 34 (三)白背芒植體元素及養分分析 34 (四)大頭茶接種菌根菌與菌根菌拓殖實驗 35 (五)叢枝菌根菌於不同性質土壤中對不同性質宿主之影響實驗 35 四、結果 36 (一) 裸土誘導繁殖 36 (二)白背芒接種試驗 36 (三)白背芒植體元素及養分分析 38 (四)大頭茶接種菌根菌與菌根菌拓殖實驗 40 (五)叢枝菌根菌於不同性質土壤中對不同性質宿主之影響實驗 41 五、討論 49 第肆章、叢枝菌根菌共生對白背芒磷酸鹽轉運蛋白基因表現之影響 52 一、前言 52 二、前人研究 54 三、材料與方法 56 (一)RNA抽取 56 (二)RNA定量及變性膠體電泳分析 56 (三)互補DNA (complementary DNA, cDNA)合成 56 (四)白背芒磷酸鹽轉運蛋白編碼基因引子設計 57 (五)白背芒內參基因引子設計 59 (六)磷酸鹽轉運蛋白編碼基因親緣關係分析 (phylogenetic analysis) 59 (七)Real-time PCR 60 四、結果 62 五、討論 65 第伍章、總結 68 第陸章、參考文獻 69 附錄1. 大油坑噴氣口鄰近植生共生內生菌根菌名錄 (粗體為誘導培育分離鑑定菌種) 83 表目次 表1. 繡球菌門 (Glomeromycota) 新分類 (Oehl et al., 2011b) 5 表2.大油坑不同植生類型土壤養分化學性質 11 表3. 大油坑不同植群型主要伴生植物及內生菌根菌組成 12 表4. 大油坑地區叢枝菌根菌組成DCA分析結果 24 表5. 大油坑地區叢枝菌根菌組成CCA分析結果 24 表6. CCA分析結果之各環境因子與前4軸之相關性 25 表7. 白背芒於距離大油坑噴氣口100 m土壤4種不同叢枝菌根菌接種處理10個月後植株高度與葉寬比較 38 表8. 距離大油坑噴氣口100m土壤種植白背芒4種不同處理10個月後植體內養分組成 40 表9.大頭茶於距離大油坑噴氣口120 m及 20 m土壤不同菌根菌接種處理10個月後之生長表現比較 41 表10. Entrophospora columbiana、Scutellospora calospora、Acaulospora morrowiae 3種菌種於河砂、海砂、大油坑土3種土壤中與台灣櫸、黃槿、大頭茶形成菌根之狀況。 42 表11. 不同土壤接種菌根菌對黃槿苗高之雙向變方分析表 43 表12.黃槿於3種土壤中4種不同菌根菌接種處理10個月後之植株高度(cm) 43 表13. 不同土壤接種菌根菌對大頭茶苗高之雙向變方分析表 44 表14.大頭茶於3種土壤中4種不同菌根菌接種處理10個月後之植株高度(cm) 44 表15. 不同土壤接種菌根菌對台灣櫸苗高之雙向變方分析表 45 表16.台灣櫸於3種土壤中4種不同菌根菌接種處理10個月後之植株高度(cm) 45 表17. 不同土壤接種菌根菌對黃槿植株乾重之雙向變方分析表 45 表18.黃槿於3種土壤中4種不同菌根菌接種處理10個月後之植株乾重(g) 46 表19.不同土壤接種菌根菌對大頭茶植株乾重之雙向變方分析表 46 表20.大頭茶於3種土壤中4種不同菌根菌接種處理10個月後之植株乾重(g) 47 表21.不同土壤接種菌根菌對台灣櫸植株乾重之雙向變方分析表 47 表22.台灣櫸於3種土壤中4種不同菌根菌接種處理10個月後之植株乾重(g) 48 圖目次 圖 1.大油坑噴氣口鄰近植被土壤中內生菌根菌 16 圖 2.大油坑噴氣口鄰近植被土壤中內生菌根菌 17 圖 3.大油坑火山噴氣口鄰近植被土壤中內生菌根菌 18 圖 4.大油坑噴氣口鄰近植被土壤中內生菌根菌 19 圖 5.大油坑不同植群類型月 (1、4、7、10) 土壤單位孢子數量 19 圖 6. 大油坑不同植群類型月 (1、4、7、10)土壤中菌根菌孢子組成比例 21 圖 7. 陽明山小油坑管理站101年月均溫 22 圖 8. 陽明山小油坑管理站101年降雨月均量 22 圖 9.大油坑地區菌根菌調查樣點於DCA第1、第2軸之位置圖 26 圖 10.大油坑地區樣點與環境因子CCA雙序圖 26 圖 11.大油坑地區17種菌根菌與環境因子CCA雙序圖 27 圖 12. 白背芒種子於大油坑距噴氣口不同距離之土壤2個月後生長狀態比較 36 圖 13.白背芒接種Entrophospora columbiana 3個月後可形成菌根 37 圖 14.白背芒接種Glomus clarum 3個月後可形成菌根 37 圖 15. 南横 (左) 與大油坑 (右) 種源白背芒在大油坑土壤發芽率比較 38 圖 16. 白背芒於距離大油坑噴氣口100m土壤4種不同處理10個月後植株外觀 39 圖 17. 大頭茶於距離大油坑噴氣口20m土壤進行不同菌根菌接種處理7個月後之生長比較 41 圖 18. 植物磷酸鹽轉運蛋白之親緣關係圖 62 圖 19. 白背芒植物磷酸轉運蛋白基因及內參基因經real-time PCR增幅反應後產物之熔點曲線圖 63 圖 20. 白背芒不同菌根菌接種處理10個月後根部磷酸鹽轉運蛋白基因相對表現 64zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2016-01-30起公開。zh_TW
dc.subject大油坑zh_TW
dc.subject菌根菌zh_TW
dc.subject共生zh_TW
dc.subjectDayukengen_US
dc.subjectmycorrhizal fungien_US
dc.subjectsymbiosisen_US
dc.title大屯火山群大油坑硫磺噴氣口鄰近區域植群組成與叢枝菌根菌共生關係研究zh_TW
dc.titleSymbiotic Relationship between Vegetation and AM Fungi at Dayukeng Fumarole Area in Tatun Volcano Groupen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2016-01-30zh_TW
dc.date.openaccess2016-01-30-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:森林學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-104-8099033001-1.pdf2.64 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.