Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89246
標題: 以亞麻仁油為基質水性胺酯化油木材塗料之合成與抗微生物活性
Synthesis and antimicrobial activity of linseed oil-based waterborne urethane oil wood coatings
作者: Jing-Ping Chang
張靚萍
關鍵字: 亞麻仁油;六亞甲基二異氰酸酯;異佛爾酮二異氰酸酯;水性胺酯化油;金屬離子之鄰苯二甲酸單羥乙氧基乙基酯;抗微生物活性;Linseed oil;Hexamethylene diisocyanate;Isophorone diisocyanate;Waterborne urethane oil;Mono(hydroxyethoxyethyl) phthalate;Antibacterial activity
引用: 1. 李紹維、劉益軍 (2002) 聚氨酯樹脂及其應用。化學工業出版社。北京。第569頁。 2. 許弋文 (2006) 水性聚氨酯材料。化學工業出版社。北京。第21、27頁。 3. 劉吉平、田軍 (2003) 紡織科學中的納米技術。中華工商聯合出版社。北京。第134、140頁。 4. 劉國杰 (2002) 特種功能性塗料。化學工業出版社。北京。第226~227頁。 5. 方少明、郭良起、戶敏、周立明、高麗君 (2008) 聚氨酯抗菌改性的研究進展。工程塑膠應用36(5):74~77。 6. 王世杰、陳博正、陳幹男 (2004) 水性 PU 樹脂之改質研究。Chemistry 62(4):461~472。 7. 王詩貴、陳焜銘 (2006) 立體化學中心反轉之不對稱有機合成。Chemistry 61(1):21~34。 8. 左海麗、吳曉青、崔璐娟 (2007) 水性聚氨酯自乳化過程中相反轉及影響因素。膠體與化合物25:40~41。 9. 石磊、王景存、韓懷強、曹慶龍、?見明 (2010) 植物油多元醇開發與技術進展。聚氨酯工業6:9~12。 10. 牟新強、李啟甲、劉新年 (2000) 磷酸鹽玻璃抗菌劑的製備。西北輕工業學院學報18(2):79~82。 11. 侯玲 (2000) 鄰苯二甲酸十二醇酯鈉鹽的合成。廣西化工29(3):11~12。 12. 胡國文 (2010) 聚氨酯乳化過程相轉變研究。塗料工業40(1):8~19。 13. 孫曉紅、丁運生、韋力達、薛攀、楊續峰、劉志 (2010) 脂肪族二異氰酸酯的相對含量對水性聚氨酯性能影響的研究。聚氨酯99:79~81。 14. 徐峰、許恒毅、熊勇華、賴衛華、魏華 (2010) 奈米銀殺菌機理的研究進展。 食品科學31(17):420~424。 15. 馬瑪宣、游凱迪、池承恩、朱晏慷 (2011) 抗菌肥皂的抗菌效果評估。科學教育月刊336:17~35。 16. 張惠婷、張上鎮 (1998) 透明木材塗裝杉木光裂化後之表面性質變化。林產工業17(2):333~334。 17. 張葵花、林松柏、譚紹早 (2005) 有機抗菌劑研究現狀及發展趨勢。塗料工業35(5):45~63。 18. 張繼德、許利劍、聶立波、劉燕 (2007) 單組分室溫交聯水性木器塗料的製備。湖南工業大學學報21(4):55~59。 19. 陳榮輝、鄭寶樹、陳文揚、蘇錦梅 (2012) MMA/MAA/TiO2抗靜電光學奈米複合材料之合成與物性的研究。國立高雄師大學報32:1~18。 20. 鹿秀山、郝廣杰、郭天瑛、宋謀道、張邦華 (2001) 水性聚氨酯乳化過程中相轉變的研究。高分子學報1:320~324。 21. 黃金城 (1994) 木材用氣乾型水性塗料配方指標。塗料與塗裝技術48:13~19。 22. 黃長澤 (1990) 水分散交聯性PU之介紹。塗料與塗裝技術21:47~54。 23. 黃長澤 (1994) 水性塗料用樹脂之介紹。塗料與塗裝技術48:49~59。 24. 黃長澤 (1995a) PU水性化技術之介紹。塗料與塗裝技術53:25~32。 25. 黃長澤 (1995b) 水性塗料特論(四)-PU 水性化技術的介紹(續)。塗料與塗裝技術 54:18~27。 26. 黃長澤 (1996) 水性塗料特論(六)-PU 水性化技術的介紹(續)。塗料與塗裝技術56:22~31。 27. 溫昕、安勝軍、侯志飛、焦展 (2009) 載銀緩釋型抗菌敷料。化學進展21(7/8):1644~1654。 28. 盧崑宗、張家偉、謝忠穎 (2007) 亞麻仁油為基質之壓克力化氨酯寡聚體UV塗料之合成與應用。林產工業26(2):107~116。 29. 盧崑宗、吳幸芳 (2008) 桐油為基質自由基聚合型UV塗料之合成與應用。林業研究季刊30:57~66。 30. 顏財彬、傅和青、陳煥欽 (2012) HDI/IPDI對水性聚氨酯及膠膜性質之影響。 化工學報63(7):2258~2265。 31. 胡政欣 (2013) 小花蔓澤蘭醋液及其分離部於小黑蚊忌避性與抗菌性之應用。國立中興大學森林學系研究所碩士論文。台中。第66~70頁。 32. 張崇學 (2007) 聚胺基甲酸酯-奈米金複合材料結晶行為研究。淡江大學化學工程與材料工程學系碩士論文。台北。第30~32頁。 33. 張家偉 (2014) 以植物油為基質水性木材塗料之研發。國立中興大學森林學系博士論文。台中。第50~51、122~123頁。 34. 黃俊叡 (2012) 兼具抗菌與撥水尼龍織物之研究。亞東技術學院纖維與材料應用產業研發碩士專班碩士論文。台北。第23頁。 35. 蔣宗辰 (2009) 以雙脂肪酸聚醇製備的水性 PU 之研究。國立中央大學化學工程與材料工程學系碩士學位論文。桃園。第35~38頁。 36. 鄭詔仁 (2000) 水性PU之流變性質研究。國立中央大學化學工程研究所碩士論文。桃園。第20~25頁。 37. 葉名倉(2008) 晶體的生長。http://highscope.ch.ntu.edu.tw/wordpress/?p=3425 38. 檢索日期:2014-05-23。 39. Szycher, M. (2012) Szycher's handbook of polyurethanes, second edition. CRC Press: 428. Florida, USA. 40. Díaz-Visurraga, J., C. Gutiérrez, C. V. Plessing and A. García (2011) Metal N-nanostructures as antibacterial agents. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances: Formatex Research Center: 210~218. Badajoz, Spain. 41. Arrighi, V., I. J. McEwen, H. Qian and M. B. Serrano Prieto (2003) The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer 44(20): 6259~6266. 42. Bao, L. H., Y. J. Lan and S. F. Zhang (2006) Effect of NCO/OH molar ratio on the structure and properties of aqueous polyurethane from modified castor oil. Iranian Polymer Journal 15(9): 737~746. 43. Bullermann, J., S. Friebel, T. Salthammer and R. Spohnholz (2013) Novel polyurethane dispersion based on renewable raw materials - stability studies by variations of DMPA content and degree of neutralization. Progress in Organic Coatings 76(4): 609~615. 44. Chang, C. C. and C. H. Chang (2010) Preparation and characterization of polyurethane-gold nanocomposites prepared using encapsulated gold nanoparticles. Polymer Internationa 59(7): 910~916. 45. Chang, C. W. and K. T. Lu (2012) Natural castor oil based 2-package waterborne polyurethane wood coatings. Progress in Organic Coatings 75(4): 435~443. 46. Chang, C. W. and K. T. Lu (2013) Linseed-oil-based waterborne UV/air dual-cured wood coatings. Progress in Organic Coatings 76(7-8): 1024~1031. 47. Chattopadhyay, D. K., B. Sreedhar and K. V. S. N. Raju (2005) Thermal stability of chemically crosslinked moisture-cured polyurethane coatings. Journal of Applied Polymer Science 95: 1509~1518. 48. Desai, S. D., J. V. Patel and V. K. Sinha (2003) Polyurethane adhesive system from biomaterial-based polyol for bonding wood. International Journal of Adhesion & Adhesives 23(5): 393~399. 49. Dieterich, D., W. Keberle and H. Witt (1970) Polyurethane ionomers, a new class of block polymers. Angewandte Chemie International Edition 9(1): 40~50. 50. Garrison, T. F., M. R. Kessler and R. C. Larock (2014) Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings. Polymer 55(4): 1004~1011. 51. Guo, A., D. Demydov, W. Zhang and Z. S. Petrovic (2002) Polyols and polyurethane from hydroformylation of soybean oil. Journal of Polymers and the Environment 10(1-2): 49~52. 52. Hablot, E., D. Zheng, M. Bouquey and L. Ave´rous (2008) Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties. Macromolecular Materials and Engineering 293(11): 922~929. 53. Hourston, D. J., G. Williams, R. Satguru, J. D. Padget and D. Pears (1997) Structure-property study of polyurethane anionomers based on various polyols and diisocyanates. Journal of Applied Polymer Science 66(10): 2035~2042. 54. Hsu, S. H., H. J. Tseng and Y. C. Lin (2010) The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 31(26): 6796~6808. 55. Javni, I., Z. S. Petrović, A. Guo and R. Fuller (2000) Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science 77(8): 1723~1734. 56. Javni, I., W. Zhang and Z. S. Petrovic (2003) Effect of different isocyanates on the properties of soy-based polyurethanes. Journal of Applied Polymer Science 88(13): 2912~2916. 57. Jayakumar, R., S. Nanjundan, M. Rajkumar and R. Nagendran (2001) Studies on metal-containing polyurethane based on divalent metal salts of mono (hydroxylethoxyethyl)phthalate. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 38(9): 869~888. 58. Jayakumar, R., M. Rajkumar, R. Nagenran and S. Nanjundan (2002) Synthesis and characterization of metal-containing polyurethane with antibacterial activity. Journal of Applied Polymer Science 85(6): 1194~1206. 59. Jayakumar, R., Y. S. Lee, M. Rajkumar and S. Nanjundan (2004) Synthesis, characterization, and antibacterial activity of metal-containing polyurethanes. Journal of Applied Polymer Science 91(1): 288~295. 60. Jayakumar, R. and S. Nanjundan (2006) Studies on metal-containing co-polyurethanes based on mono(hydroxyethoxyethyl)phthalate. Journal of Macromolecular Science 43(6): 945~954. 61. Ji, X., Y. Zhou, B. Zhang, C. Hou and G. Ma (2013) Polydimethylsiloxane and castor oil comodified waterborne polyurethane. ISRN Polymer Science 2013: 1~10. 62. Kristoufek, L., K. Janda and D. Zilberman (2012) Relationship between prices of food, fuel and biofuel. Paper prepared for presentation at the 131st EAAE Seminar 'Innovation for Agricultural Competitiveness and Sustainability of Rural Areas', Prague, Czech Republic. 63. Larché, J. F., P. O. Bussière and J. L. Gardette (2011) Photo-oxidation of acrylic-urethane thermoset networks. Relating materials properties to changes of chemical structure. Polymer Degradation and Stability 96(8): 1438~1444. 64. Lazzari, M. and O. Chiantore (1999) Drying and oxidative degradation of linseed oil. Polymer Degradation and Stability 65(2): 303~313. 65. Lee, S. Y., J. S. Lee and B. K. Kim (1997) Preparation and properties of water-borne polyurethanes. Polymer International 42(1): 67~76. 66. Li, J. H., R. Y. Hong, M. Y. Li, H. Z. Li, Y. Zheng and J. Ding (2009) Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Progress in Organic Coatings 64(4): 504~509. 67. Li, Q., S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li and P. J. J. Alvarez (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research 42(18): 4591~4602. 68. Ling, J. S., I. A. Mohammed, A. Ghazali and M. Khairuddean (2014) Novel poly(alkyd-urethane)s from vegetable oils: synthesis and properties. Industrial Crops and Products 52: 74~84. 69. Lu, Y. and R. C. Larock (2008) Soybean-oil-based waterborne polyurethane dispersion effects of polyol functionality and hard segment content on properties. Biomacromolecules 9(11): 3332~3340. 70. Lu, Y. and R. C. Larock (2010) Soybean oil-based, aqueous cationic polyurethane dispersion: synthesis and properties. Progress in Organic Coatings 69(1): 31~37. 71. Mallégol, J., J. L. Gardette and J. Lemaire (1999) Long-term behavior of oil-based varnishes and paints I. Spectroscopic analysis of curing drying oils. Journal of the American Oil Chemists' Society 76(8): 967~976. 72. Mallégol, J., J. L. Gardette and J. Lemaire (2000a) Long-term behavior of oil-based varnishes and paints. photo- and thermooxidation of cured linseed oil. Journal of the American Oil Chemists' Society 77(3): 257~263. 73. Mallégol, J., J. Lemaire and J. L. Gardette (2000b) Drier influence on the curing of linseed oil. Progress in Organic Coatings 39(2-4): 117~130. 74. Matsuda, H. (1974) Synthesis of polymers by using divalent metal salts of mono(hydroxyethyl)phthalate: metal-containing polyurethanes. Journal of Polymer Science 12(2): 455~468. 75. Miao, S., P. Wang, Z. Su and S. Zhang (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia 10(4): 1692~1704. 76. Mosiewicki, M., M. I. Aranguren and J. Borrajo (2005) Mechanical properties of linseed oil monoglyceride maleate/styrene copolymers. Journal of Applied Polymer Science 97(3): 825~836. 77. Patel, A., C. Patel, M. G. Patel, M. Patel and A. Dighe (2010a) Fatty acid modified polyurethane dispersion for surface coatings: effect of fatty acid content and ionic content. Progress in Organic Coatings 67: 255~263. 78. Patel, H. V., J. Raval and P. S. Patel (2010b) Hybrid polyurethane coating systems based on renewable material. International Journal of ChemTech Research 2(1): 532~542. 79. Pfister, D. P., Y. Xia and R. C. Larock (2011) Recent advances in vegetable oil-based polyurethanes. ChemSusChem 4:703~717. 80. Popa, V. M., A. Gruia, D. N. Raba, D. Dumbrava,C. Moldovan, D. Bordean and C. Mateescu (2012) Fatty acids composition and oil characteristics of linseed (Linum Usitatissimum L.) from Romania. Journal of Agroalimentary Processes and Technologies 18(2): 136-140. 81. Rahman, M. M., H. J. Yoo, C. J. Mi and H. D. Kim (2007) Synthesis and characterization of waterborne polyurethane/clay nanocomposite¬-effect on adhesive strength. Macromolecular Symposia 249-250(1): 251~258. 82. Rajput, S. D., D. G. Hundiwale, P. P. Mahulikar and V. V. Gite (2014) Fatty acids based transparent polyurethane films and coatings. Progress in Organic Coatings 77(9): 1360~1368. 83. Santos, D. D. J., L. B. Tavares and G. F. Batalha (2012) Mechanical and physical properties investigation of polyurethane material obtained from renewable natural source. Journal of Achievements in Materials and Manufacturing Engineering 54(2): 211~217. 84. Sardon, H., L. Irusta, M. J. Fernández-Berridi, M. Lansalot and E. Bourgeat-Lami (2010) Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-Aminopropyl)triethoxysilane (APTES). Polymer 51(22): 5051~5057. 85. Sardon, H., L. Irusta, M. J. Fernández-Berridi, J. Luna, M. Lansalot and E. Bourgeat-Lami (2011) Waterborne polyurethane dispersion obtained by the acetone process: a study of colloidal features. Journal of Applied Polymer Science 120: 2054~2062. 86. Saw, L. K., B. W. Brooks, K. J. Carpenter and D. V. Keight (2003) Different dispersion regions during the phase inversion of an ionomeric polymer-water system. Journal of Colloid and Interface Science 257(1): 163~172. 87. Schuchardt, U., R. Sercheli and R. M. Vargas (1998) Transesterification of vegetable oil: a review. Journal of the Brazilian Chemical Society 9(1): 199~210. 88. Stirna U., I. Sevastyanova and M. Misane (2006) Structure and properties of polyurethane foams obtained from rapeseed oil polyols. Proceedings of the Estonian Academy of Sciences. Chemistry 55(2): 101~110. 89. Weerd, J. V. D., A. V. Loon and J. J. Boon (2005) FTIR studies of the effects of pigments on the aging of oil. Journal of Studies in Conservation 50(1): 3~22. 90. Wicks, Z. W., D. A. Wicks and J. W. Rosthauser (2002) Two package waterborne urethane systems. Progress in Organic Coatings 44(2): 161~183. 91. Wong, C. S. and K. H. Badri (2012) Chemical analyses of palm kernel oil-based polyurethane prepolymer. Materials Sciences and Applications 3(2): 78~86. 92. Zafar, F., S. M. Ashraf and S. Ahmad (2007) Studies on zinc-containing linseed oil based polyesteramide. Reactive & Functional Polymers 67(10): 928~935. 93. Zhu, J., Z. Ren, G. Zhang, X. Guo and D. Ma (2006) Comparative study of the H-bond and FTIR spectra between 2,2-hydroxymethyl propionic acid and 2,2-hydroxymethyl butanoic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 63(2): 449~453.
摘要: 
以亞麻仁油(Linseed oil, LO)與甘油(Glycerol, GL)莫耳比1.0行酯交換反應,獲得具羥基之亞麻仁油甘油酯(Linseed oil glyceride, LOG)。接著將二羥甲基丙酸(Dimethylolpropionic acid, DMPA)分別與六亞甲基二異氰酸酯(Hexamethylene diisocyanate, HDI)及異佛爾酮二異氰酸酯(Isophorone diisocyanate, IPDI)進行反應再添加LOG,並依不同NCO/OH莫耳比(0.7、0.8及0.9)反應合成水性胺酯化油(Waterborne urethane oil, WUO)分散液,並添加金屬乾燥劑成為WUO塗料,探討異氰酸酯種類與NCO/OH莫耳比對於WUO塗料及塗膜性質之影響。結果顯示以異氰酸酯HDI合成之塗膜較軟韌,且其耐磨性、抗彎曲性、耐衝擊性及質量保留率之性質較佳,而以IPDI合成者塗膜較剛硬,具有較高之硬度與玻璃轉移溫度(Glass transition temperature, Tg),但抗彎曲性不佳。隨合成之NCO/OH莫耳比上升,塗膜之質量保留率、Tg與硬度均提高。再於WUO塗料中添加不同含量(0-4.0 phr)之含金屬離子之鄰苯二甲酸單羥乙氧基乙基酯[Mono(hydroxyethoxyethyl) phthalate, M(HEEP)2, M= Zn, Mn, Pb, Ca]抗微生物劑,及與市售奈米銀粉末製成抗微生物性塗料,探討各配方塗膜對於革蘭氏陰細菌之大腸桿菌(Escherichia coli)、革蘭氏陽細菌之金黃色葡萄球菌(Staphylococcus aureus)、褐腐菌之密黏褶菌(Gloeophyllum trabeum)與硫磺菌(Laetiporus sulphureus)及白腐菌之樺褶孔菌(Lenzites betulina)的抗微生物活性;試驗結果發現以HDI合成之WUO塗膜中,添加0.2 phr之Pb(HEEP)2抗微生物效果最佳,而以IPDI合成之塗膜,則以添加0.2 phr之Zn(HEEP)2具最佳之抗微生物效果,相較於市售奈米銀粉末之WUO塗膜,本研究所合成之Zn(HEEP)2、Pb(HEEP)2之抗微生物效果對真菌而言具有較佳之抗微生物活性,而對細菌之抗微生物效果則稍劣於市售奈米銀。抗微生物塗膜性質方面顯示,所有抗微生物塗膜之熱穩定性均優於未添加抗微生物者,其中又以HDI合成且添加Pb(HEEP)2者之Tg最高、但光澤度降低,而添加奈米銀者則塗膜不受影響,而以IPDI合成且添加Zn(HEEP)2及奈米銀者之硬度與Tg均降低。

The linseed oil glyceride (LOG) was synthesized using a transesterification process with glycerol (GL) and linseed oil (LO) at a molar ratio of 1.0 (GL/LO). The waterborne urethane oil (WUO) dispersion were prepared from LOG reacting with hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI) as well as dimethylolpropionic acid (DMPA) at various NCO/OH molar (0.7, 0.8 and 0.9), respectively. The WUO coatings were obtained by adding metal driers. The effects of isocyanates type and NCO/OH molar ratios on the WUO coatings and films were examined. The results showed that the properties of WUO films which synthesizing with HDI were soft and tough, while the superior abrasion resistance, bending resistance, impact resistance and mass retention were also obtained. In addition, the properties of films synthesizing with IPDI were rigid, and it possessed higher hardness and glass transition temperature (Tg), however the poor bending resistance was detected. With NCO/OH ratio increasing, the mass retention, Tg and hardness of WUO films increased. Furthmore, in this study the different types and various contents of mono(hydroxyethoxyethyl) phthalate [M(HEEP)2] antimicrobial agents, which the M were Zn, Mn, Pb and Ca, as well as the commercial nano silver powder were adding into WUO coatings as the antimicrobial coating. To compare the effects of the different antimicrobial agents and contents on antimicrobial activity of WUO films against gram negative of Escherichia coli, gram positive of Staphylococcus aureus, brown-rot fungi of Gloeophyllum trabeum and Laetiporus sulphureus as well as white-rot fungus of Lenzites betulina were also assessed. The results showed that the HDI films containing 0.2 phr Pb(HEEP)2 and IPDI films containg 0.2 phr Zn(HEEP)2 had superior antimicrobial activity. Comparing with commercial nano silver powder, the Zn(HEEP)2 and Pb(HEEP)2 had a better antimicrobial efficiency for fungi, while the antimicrobial activity for bacteria was less efficiency. The properties of antimicrobial WUO films showed that the thermal stability of all the antimicrobial film were improved. The films synthesizing with HDI and containing 0.2 phr Pb(HEEP)2 had higher Tg, but lower gloss. However it had no significant effects on adding nano silver powder into the films synthesizing with HDI. Both of hardness and Tg of the films synthesizing with IPDI and containing Zn(HEEP)2 and nano silver powder were decreased as compared with the WUO films without antimicrobial agents.
URI: http://hdl.handle.net/11455/89246
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-14起公開。
Appears in Collections:森林學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102033026-1.pdf2.71 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.