Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89250
DC FieldValueLanguage
dc.contributor吳耿東zh_TW
dc.contributor.authorLi-Wei Yuen_US
dc.contributor.author余立瑋zh_TW
dc.contributor.other森林學系所zh_TW
dc.date2014zh_TW
dc.date.accessioned2015-12-07T07:00:44Z-
dc.identifier.citation方偉銘 (2012) 柳杉與相思樹活性炭之性質其於建築料之應用。國立中興大學森林學系研究所碩士論文。台中。 郭魁士 (1986) 土壤學。中國書局。台北。 陳莉鵑 (2006) 竹醋液之蒸餾精製及其於植物生長促進劑之應用。國立中興大學森林學系研究所碩士論文。台中。 盧崑宗、郭嘉雯、劉正字 (2007) 不同炭化溫度範圍收集竹醋液之基本性質及其抗植物病原細菌活性。中華林學季刊 40: 97-112。 Akakabe, Y., Y. Tamura, S. Iwanoto, M. Takabayashi and T. Nyuugaku (2006) Volatile organic compounds with characteristic odor in bamboo vinegar. Bioscience, Biotechnology, and Biochemistry 70: 2797-2799. Bergman, P. C. A., A. R. Boersma, R. W. R. Zwart and J. H. A. Kiel (2005) Torrefaction for biomass co-firing in existing coal-fired power stations. ECN Report, ECN-C-05-013. Case, S. D.C., N. P. McNamara, D. S. Reay and J. Whitaker (2011) The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil - The role of soil aeration. Soil Biology & Biochemistry 51: 125-134. Chan, K. Y., Zwieyen, L. Van, Meazaros, I., Downie, A. and S..Joseph, (2007) Agronomic values of greenwaste biochar as a soil amendment, Australian Journaof Soil Research 45: 629-634. Chew, J. J. and V. Doshi (2011) Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renewable and Sustainable Energy Reviews 15: 4212-422. Cheng, C.H., J. Lehmann, J. E. Thies, S. D. Burton and M. H. Engelhard (2006) Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37: 1477-1488. Chen, B. D. Zhou, and L. Zhu (2008) Transitional Adsorption and Partition of Nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental science & technology 42: 5137-5143. Ding, Y., Y. X., Liu, W. X. Wu, D. Z. Shi, M. Yang and Z. K. Zhong (2010) Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut 213: 47–55. Doerr, S. H., ,R. A. Shakesby and R.P.D. Walsh (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews 51: 33 – 65. Gaskin, J.W., C. Steiner, K. Harris, K. C. Das and B. Bibens (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. American Society of Agricultural and Biological Engineers 51: 2061- 2069. Gaunt, J. L. and J. Lehmann (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environmental science & technology 42: 4152-4158. Glaser, B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Biological Science 362: 187-196. Glaser, B., J. Lehmann and W. Zech (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fertil Soils 35 :219–230. IUPAC (1972) Manual of Symbols and Terminology, appendix 2, Pt.1, Colloid and Surface Chemistry. Pure and Applied Chemistry 31 : 578-638. Kwapinski, W., C. M. P. Byrne, ,E. Kryachko, P. Wolfram, C. Adley, J. J. Leahy., E. H. Novotny and M. H. B. Hayes (2010)Biochar from biomass and waste. Waste Biomass Valor (2010) 1 :177–189. Kishimoto, S. and G, Sugiura. (1985). Charcoal as a soil conditioner. International Achieve Future 5 :12–23. Lajtha, K., P. Sollins, B. G. Ellis, and G. P. Robertson (1999) Standard soil methods for long-term ecological research :106-110. Laird, D., P. Fleming, B. Wang, R. Horton and D. Karlen (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158 : 436–442. Lehmann, J., John, G., and Marco R., (2006)Biochar sequestration in terrestrial ecosystems – a review, Mitigation and Adaptation Strategies for Global Change 11: 403–427. Lehmann, J., Czimczik, C., Laird, D., Sohi, S. (2009) Stability of biochar in soil. In: Lehmann, J., Stephen, J. (Eds.), Biochar for Environmental Management. Earthscan,: 193–206. Liang, B., J. Lehmann, D. Solomon , J. Kinyangi, J. Grossman, B. O'Neill, J. O. Skjemstad, J. Thies , F. J. Luiz?o, J. Petersen and E. G. Neves (2006) Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70 : 1719-1730. Major, M., M. Rondon, D. Molina, S. J. Riha and J. Lehmann (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol . Plant Soil 333 :117–128. Masulili, A., W.H. Utomo and S. MS (2010) Rice Husk Biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in west kalimantan, Indonesia.journal of agricultural science 2 :39 - 47. Mehlich, A. (1985). Mehlich 3 Soil Test Extractant: a modi?cation of Mehlich 2 Extractant.Commun.Soil. Sci. Plan. 15 :1409–1416. Melkuior, T., S. Jacob, G. Gerbaud, S. Hediger, L. L. Pape, L. Bonnefois and M. Bardet (2012) NMR analysis of the transformation of wood constituents by torrefaction. Fuel 92: 271-280. Mulcahy , D. N. , D.L. Mulcahy and D. Dietz (2012) Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. Journal of Arid Environments 88: 222-225. Mukherjee, A. and A. R. Zimmerman (2012) Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 193-194:122–130. Mu.A and N. Nisan (2009) Truthful approximation mechanisms for restricted combinatorial auctions. Games and Economic Behavior 64 : 612-631. Oguntunde, P.G., M. Fosu, A. E. Ajayi and N. van de Giesen (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fertil Soils 39 :295–299. Rhoades, J.D. (1982) Cation exchange capacity. In: Page, A.L., Miller,R.H., Keeney, D.R. (Eds.). Methods of Soil Analyses, Part 2, Chemical and Microbiological Properties,: 149 – 167. Peng, X, L.L. Ye, C.H. Wang, H. Zhou and B. Sun (2010) Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil & Tillage Research 112: 159–166. Pimchuai, A., A. Dutta and P. Basu (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24: 4638 - 4645. Rogovska, N., D. Laird , R. Cruse, P. Fleming, T. Parkin and D Meek.(2010)Impact of Biochar on Manure Carbon Stabilization and Greenhouse Gas Emissions. Soil Science Society of America Journal 75: 871-879. Rondon ,M. A. , J. Lehmann, J. Ram?rez and M. Hurtado, (2006) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43: 699–708. Singh, B., B. P. Singh and A. Cowie (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research 48: 516–525. Sean, D.C.C., N.P. McNamara, D. S. Reay, J. Whitaker (2012) The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil - The role of soil aeration. Soil Biology &Biochemistry 51: 125-134. Steiner, C., W. G. Teixeira , J. Lehmann , T. Nehls, J. L. V. d. Mac?do , W. E. H. Blum and W. Zech (2007)Long term eVects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291: 275–290. Shand, C. A., ,B.L.Williams and G.Coutts (2008)Determination of N-species in soil extracts using microplate techniques. Talanta74: 648–654. Taghizadeh-Toosi, A, T. J. Clough, R. R. Sherlock and L. M. Condron (2011) A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353: 73–84. Tristram, O. W. and G. Marland (2001) A synthesis of carbon sequestration, carbon emissions, and net carbon ?ux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment 91: 217–232. Warnock , D. D., J. Lehmann, T. W. Kuyper and M. C. Rillig (2007) Mycorrhizal responses to biochar in soil - concepts and mechanisms. Plant Soil 300: 9-20. Weatherburn, M. W. (1967) Phenol-Hypochlorite Reaction for Determination of Ammonia .Analytical chemistry 39: 971–974. Yanai, Y., K. Toyota and, M. Okazaki, (2007). Effectsof charcoal additionon NO2 missions from soil resulting from rewetting air-dried soil in short-term laboratoryexperiments. SoilSci. PlantNutr 53: 181–188. Yamato, M., Y. Okimori , I. F. Wibowo , S. Anshori and M. Ogawa (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition 52: 489-495. Yatagai, M., M. Nishimoto , K. Hori, T. Ohira and A. Shibata (2002) Termiticidal activity of wood vinegar, its components and their homologues. Japan Wood Research Society 48: 338-342. Zwieten, L. V., S. Kimber, S. Morris, K.Y.Chang., A. Downie, J. Rust, S. Joseph and A.Cowie(2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil 327: 235-246.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/89250-
dc.description.abstract本研究係以焙燒及炭化生物炭進行土壤改質,並對生物炭促進作物生長進行分析。 製備生物炭所使用的材料為柳杉及相思,試驗所選用的反應溫度為250、300、350、400、500與600 oC;熱處理反應持溫時間為60 min。經熱處理過後所得到之生物炭並對其進行收率、元素分析、近似分析、比表面積、總孔體積、與平均孔徑分析。 在作物生長試驗方面,分別以0%, 5%、10%以及20%之生物炭比例混入一般砂質土壤中,然後以每盆盆栽置入500 g混合土壤,並在盆中分別種植小白菜、青梗白菜與油菜心三種作物。一般市售活性炭以及未經處理之木粒片亦作為添加劑混入土壤,與經熱處理所得之生物炭進行比較。經過28 天後,作物收成並秤量作物重量。種植過後的土壤則取出風乾後分析其土壤性質,包括有效磷、氨態氮、硝酸態氮、鈉、鉀、鈣、鎂離子、土壤中可置換性陽離子總量及pH值等。 研究結果顯示,隨著熱處理溫度的增加,生物炭的比表面積、總孔體積都有明顯上升的趨勢,在孔徑大小的部份則是隨著溫度提升而下降,其中600oC之生物炭孔徑大小與活性碳相近,但比表面積與總孔體積則相差甚大。在兩種不同的原料中,柳杉生物炭比相思生物炭具有較高之碳含量、比表面積及總孔體積。 在作物生長方面,小白菜、青梗白菜與油菜心收成的重量,皆隨著添加生物炭的比例增加而有所提升;在不同的生物炭種類中,混合柳杉生物炭之土壤可使作物生長的更好;在不同溫度製備之生物炭中,混合400oC以上製備之生物炭可使作物有顯著性的增長,但使用600oC以上製備的生物炭,作物收成重量則有下降的趨勢。 在土壤分析方面,添加生物炭後可有效的留存氨態氮、硝酸態氮、有效磷、鈉、鉀、鈣、鎂等離子,提供作物生長時所需的養分。zh_TW
dc.description.abstractThe objective of this study is to investigate the soil amendments by using biochar from torrefaction and carbonization of woody materials, and evaluating the plant growth promotion by using biochar. Cryptomeria japonica and Acacia confusa chips were used as feedstock for preparing the biochar by torrefaction or carbonization. The operating conditions for torrefaction or carbonization temperatures were 250, 300, 350, 400, 500 and 600oC, and the residence time is 60 minutes. The characteristics of biochar from torrefaction or carbonization processes, such as mass yield, ultimate and proximate analyses, specific surface area, total pore volume, pore size distribution and average pore diameter were examined. All plant growth experiments were carried out in pots containing 500 gram soil which was mixed with biochar and sandy soil. The biochar adding rates were 0, 5, 10, and 20 wt.%, and also the activated carbon and woody feedatock were employed as another additive. Three plants including Brassica rapa chinensis, Brassica chinensis Linn., and Brassica campestris were grown in the biochar-added soil to examine NH4-N, NO3-N, available phosphorous, Na, K, Ca, Mg, cation excange capacity (CEC), and water retention ability. The weight of plants after growing for 28 days in the soil was also investigated. The results show that specific surface area, total pore volume of biochar increased with increasing the torrefaction or carbonization temperatures, but the average pore diameter shows the contrary results. The average pore diameter of biochar carbonized at 600oC is similar to that of the activated carbon, but the specific surface area and the total pore volume were widely different. In addition, the higher carbon content, specific surface area and total pore volume of biochar form Cryptomeria japonica were found compared with those of biochar from Acacia confusa. The growth weight of Brassica rapa chinensis, Brassica chinensis Linn., and Brassica campestris after applying biochar increased with increasing the preparation temperature of biochar. The growth rate of plant by applying biochar form Cryptomeria japonica was better than applying that from Acacia confusa. The plant growth rate increased significantly by applying biochar prepared above 400oC, but the results shows the contrary results by applying biochar prepared above 600oC. In addition, adding biochar into the soil could increase the amount of NH4-N, NO3-N, available phosphorous, Na, K, Ca, Mg, CEC, and water retention ability to provide the nutritious for plant growth. The objective of this study is to investigate the soil amendments by using biochar from torrefaction and carbonization of woody materials, and evaluating the plant growth promotion by using biochar. Cryptomeria japonica and Acacia confusa chips were used as feedstock for preparing the biochar by torrefaction or carbonization. The operating conditions for torrefaction or carbonization temperatures were 250, 300, 350, 400, 500 and 600oC, and the residence time is 60 minutes. The characteristics of biochar from torrefaction or carbonization processes, such as mass yield, ultimate and proximate analyses, specific surface area, total pore volume, pore size distribution and average pore diameter were examined. All plant growth experiments were carried out in pots containing 500 gram soil which was mixed with biochar and sandy soil. The biochar adding rates were 0, 5, 10, and 20 wt.%, and also the activated carbon and woody feedatock were employed as another additive. Three plants including Brassica rapa chinensis, Brassica chinensis Linn., and Brassica campestris were grown in the biochar-added soil to examine NH4-N, NO3-N, available phosphorous, Na, K, Ca, Mg, cation excange capacity (CEC), and water retention ability. The weight of plants after growing for 28 days in the soil was also investigated. The results show that specific surface area, total pore volume of biochar increased with increasing the torrefaction or carbonization temperatures, but the average pore diameter shows the contrary results. The average pore diameter of biochar carbonized at 600oC is similar to that of the activated carbon, but the specific surface area and the total pore volume were widely different. In addition, the higher carbon content, specific surface area and total pore volume of biochar form Cryptomeria japonica were found compared with those of biochar from Acacia confusa. The growth weight of Brassica rapa chinensis, Brassica chinensis Linn., and Brassica campestris after applying biochar increased with increasing the preparation temperature of biochar. The growth rate of plant by applying biochar form Cryptomeria japonica was better than applying that from Acacia confusa. The plant growth rate increased significantly by applying biochar prepared above 400oC, but the results shows the contrary results by applying biochar prepared above 600oC. In addition, adding biochar into the soil could increase the amount of NH4-N, NO3-N, available phosphorous, Na, K, Ca, Mg, CEC, and water retention ability to provide the nutritious for plant growth.en_US
dc.description.tableofcontents目錄 摘要……………………………………………………………………………………i SUMMARY…………………………………………………………………………...ii 目錄…………………………………………………………………………………..iii 表目次………………………………………………………..………….…………….v 圖目次………………………………………………………………………………...vi 第一章 前言…………………………………..………………………………………1 第二章 文獻回顧………………….………………………………………………… 3 2.1生物炭………………………..………………………………..…………3 2.2 生物炭作為土壤改良劑利用………….…..……………………………7 2.2.1 土壤改良原理……………………………………………………..7 2.2.2 添加生物碳對土壤中菌根之影響 ………………………………8 2.2.3 生物炭作為土壤添加劑對氣候之影響…………………………. 9 2.2.4 生物炭添加比例…………………………………………………11 2.2.5 生物炭產量…………………………………………….…..…….11 2.2.6 添加生物炭對土壤養分之影響..………………………………. 14 2.2.7 添加生物炭對作物之影響………………………………………16 2.2.8 添加生物炭對保水性的影響……………………………………17 2.2.9 添加生物碳對動物之影響………………………………………17 第三章 材料與方法…………………………………………………………………18 3.1 生物炭製備………………………………...…………………………..18 3.2 生物炭性質………………………………..…………………………...21 3.2.1 近似分析與元素分析………..…………………………………21 3.3.2 生物炭pH值…….…………….………………………………..21 3.2.3 生物炭物理性質.……………….………………………………21 3.3 生物炭與土壤混合栽種作物試驗………..………...…………………23 3.4 土壤分析部份…..……………………………………...………………23 3.4.1土壤pH值…………………………………....…………………23 3.4.2土壤氨態氮與硝酸態氮測定………………………...…………25 3.4.3 土壤有效磷含量 ………………………………………………25 3.4.4 可置換性陽離子………………..………………………………25 3.4.5 陽離子置換總量..………………………………………………26 3.5 簡易土壤保水性測定………………..…………..…………………… 26 3.6作物生長分析 ……………………..…..………………………………26 3.7 數據處理…………………………………………………………….....26 3.8 二次栽種…………………………………………………………...…..26 第四章 結果與討論…………………………………………………………………27 4.1生物炭性質……………………………..………………………………27 4.1.1生物炭收率………………………………….……………..……27 4.1.2 生物炭之碳元素含量……………………………………..……30 4.1.3 生物炭之孔隙性質………………..……………………………36 4.2 作物分析………………………………..……..……………………… 45 4.2.1 添加不同熱溫度之生物炭對作物之影響……………………..45 4.2.2 添加不同比例之生物炭對作物之影響………………………..59 4.3土壤分析………..………………………………………………………60 4.3.1 土壤的pH值................................................................................60 4.3.2 土壤之氨態氮與硝酸態氮 ……..…………………………..…63 4.3.3 土壤中之有效磷 ……………………………..……………..…72 4.3.4 土壤中的陽離子 ………………………..…………………..…76 4.3.5 土壤中的可置換性陽離子總量………………....…………..…86 4.3.6 土壤的保水性………………...……………………………...…93 4.4 二次栽種之作物…………………………..……………..…………… 95 4.4.1 作物分析………….........………………………..………..….…95 4.4.2 土壤分析………….........……………………………………...102 第五章 結論與建議…….……..…………………………………………...............104 5.1 結論 ………….………………………………………………………104 5.2 建議…….……………..………………………………………………105 參考文獻………..……………………………………………………………..……106 附錄1 試驗用藥劑配方 ………………………………………………………….113 附錄2 土壤養分實驗數據 ……………………………………………………….114 作者自述....................................................................................................................120 學術著作....................................................................................................................120 目錄 摘要……………………………………………………………………………………i SUMMARY…………………………………………………………………………...ii 目錄…………………………………………………………………………………..iii 表目次………………………………………………………..………….…………….v 圖目次………………………………………………………………………………...vi 第一章 前言…………………………………..………………………………………1 第二章 文獻回顧………………….………………………………………………… 3 2.1生物炭………………………..………………………………..…………3 2.2 生物炭作為土壤改良劑利用………….…..……………………………7 2.2.1 土壤改良原理……………………………………………………..7 2.2.2 添加生物碳對土壤中菌根之影響 ………………………………8 2.2.3 生物炭作為土壤添加劑對氣候之影響…………………………. 9 2.2.4 生物炭添加比例…………………………………………………11 2.2.5 生物炭產量…………………………………………….…..…….11 2.2.6 添加生物炭對土壤養分之影響..………………………………. 14 2.2.7 添加生物炭對作物之影響………………………………………16 2.2.8 添加生物炭對保水性的影響……………………………………17 2.2.9 添加生物碳對動物之影響………………………………………17 第三章 材料與方法…………………………………………………………………18 3.1 生物炭製備………………………………...…………………………..18 3.2 生物炭性質………………………………..…………………………...21 3.2.1 近似分析與元素分析………..…………………………………21 3.3.2 生物炭pH值…….…………….………………………………..21 3.2.3 生物炭物理性質.……………….………………………………21 3.3 生物炭與土壤混合栽種作物試驗………..………...…………………23 3.4 土壤分析部份…..……………………………………...………………23 3.4.1土壤pH值…………………………………....…………………23 3.4.2土壤氨態氮與硝酸態氮測定………………………...…………25 3.4.3 土壤有效磷含量 ………………………………………………25 3.4.4 可置換性陽離子………………..………………………………25 3.4.5 陽離子置換總量..………………………………………………26 3.5 簡易土壤保水性測定………………..…………..…………………… 26 3.6作物生長分析 ……………………..…..………………………………26 3.7 數據處理…………………………………………………………….....26 3.8 二次栽種…………………………………………………………...…..26 第四章 結果與討論…………………………………………………………………27 4.1生物炭性質……………………………..………………………………27 4.1.1生物炭收率………………………………….……………..……27 4.1.2 生物炭之碳元素含量……………………………………..……30 4.1.3 生物炭之孔隙性質………………..……………………………36 4.2 作物分析………………………………..……..……………………… 45 4.2.1 添加不同熱溫度之生物炭對作物之影響……………………..45 4.2.2 添加不同比例之生物炭對作物之影響………………………..59 4.3土壤分析………..………………………………………………………60 4.3.1 土壤的pH值................................................................................60 4.3.2 土壤之氨態氮與硝酸態氮 ……..…………………………..…63 4.3.3 土壤中之有效磷 ……………………………..……………..…72 4.3.4 土壤中的陽離子 ………………………..…………………..…76 4.3.5 土壤中的可置換性陽離子總量………………....…………..…86 4.3.6 土壤的保水性………………...……………………………...…93 4.4 二次栽種之作物…………………………..……………..…………… 95 4.4.1 作物分析………….........………………………..………..….…95 4.4.2 土壤分析………….........……………………………………...102 第五章 結論與建議…….……..…………………………………………...............104 5.1 結論 ………….………………………………………………………104 5.2 建議…….……………..………………………………………………105 參考文獻………..……………………………………………………………..……106 附錄1 試驗用藥劑配方 ………………………………………………………….113 附錄2 土壤養分實驗數據 ……………………………………………………….114 作者自述....................................................................................................................120 學術著作....................................................................................................................120zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2017-08-31起公開。zh_TW
dc.subject生物炭zh_TW
dc.subject孔徑zh_TW
dc.subject焙燒zh_TW
dc.subject炭化zh_TW
dc.subject作物生長zh_TW
dc.subjectbiocharen_US
dc.subjectpore diameteren_US
dc.subjecttorrefactionen_US
dc.subjectcarbonizationen_US
dc.subjectplant growthen_US
dc.title木質生質物焙燒暨炭化之生物炭對植物生長之效應zh_TW
dc.titleEffects of Biochar from Torrefaction and Carbonization of Woody Biomass on Plant Growthen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2014-08-31zh_TW
dc.date.openaccess2017-08-31-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:森林學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101033027-1.pdf7.24 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.