Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89258
標題: 海茄苳與欖李對不同溫度之光合作用、葉綠素螢光反應及光保護策略
Temperature Response of Photosynthesis, Chlorophyll Fluorescence and Strategy of Photoprotection in Avicennia marina and Lumnitzera racemosa
作者: Chun-Hao Chan
詹鈞皓
關鍵字: 海茄苳;欖李;溫度;淨光合速率;葉綠素;光抑制;Avicennia marina;Lumnitzera racemosa;temperature;net photosynthetic rate;chlorophyll fluorescence;photoinhibition
引用: 七、引用文獻 范貴珠、許博行、張峻德 (2001) 土壤鹽度對欖李苗木光合作用之影響。林業研究季刊 23(3):47-62。 薛美莉 (1995) 消失中的溼地森林-記台灣的紅樹林。 9頁、12頁。 劉業經、呂福原、歐辰雄 (1994) 台灣樹木誌。665-666頁、486-487頁。 陳綱汶、許明晃、楊志維、黃文達、楊棋明 (2011) 越冬施肥對地毯草光生理指標之影響。科學農業 59(7,8,9):109-117。 陳明男 (2002) 四種台灣紅樹林植物對光度與溫度之生理反應。國立中興大學森林學系碩士論文。4-34頁。 徐邦達 (2002) 葉綠素螢光和PAM螢光儀:原理及測量。2002年光合作用研討會。7-8頁。 許明晃 (2003) 甘藷葉片色素含量與反射光譜關係之研究。國立台灣大學農藝學系博士論文。14-19頁。 翁韶良 (2012) 不同光適應性之木本及蕨類植物之氣體交換與葉綠素螢光特性。國立中興大學生命科學學系博士論文。13-14頁。 郭宇翔 (2013) 低溫逆境下對水稻幼苗光生理指標與光抑制之影響。國立台灣大學農藝學系碩士論文。46-47頁。 郭耀綸、陳瑄培 (2005) 南仁山森林四種台灣特稀有樹種之光合作用光反應及溫度反應。台灣林業科學 20(3):215-26。 廖天賜、陳忠義 (2007) 構樹苗木對光度之生理反應。林業研究季刊 29(3):15-26。 Andrews, T. J., Clough, B. F. and Muller, G. J. (1984) Photosynthetic gas exchange properties and carbon isotope ratios of some mangroves in North Queensland. In Physiology and Management of Mangroves 9: 15‐23. Arena, C., L. Vitale and A. Virzo de Santo (2008) Photosynthesis and photoprotective strategies in Laurus nobilis L. and Quercus ilex L. under summer drought and winter cold. Plant Biosystems 142(3): 472-479. Arnon, D. (1949) Copper enzyme in isolated chloroplasts polyphenoloxidased in Beta vulgaris. Plant Physiology 24: 1-15. Asada, K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50: 601-639. Baker, N. R. (2008) Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology 59: 89-113. Behera, R. K. and N. K. Choudhury (2002) High irradiance induced pigment degradation and loss of photochemical activity of wheat chloroplasts. Biology Plantarum 45: 45-49. Bergmeyer, H. U. (1983) Methods for protein determination in methods of enzymetic analysis. 3rd. edition vol. II-Samples reagents assessment of results. Verlag Chemie Weinheim 84-94. Bibi, A. C., D. M. Oosterhuis and E. D. Gonias (2008) Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. The Journal of Cotton Science 12: 150-159. Carmo-Silva, A. E. and M. E. Salvucci (2012) The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress. Planta 236: 1433-1445. D'Ambrosio, N., C. Arena and A. Virzo De Santo (2006) Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbonassimilation in Beta vulgaris L. Environmental and Experimental Botany 55: 248-257. Demmig-Adams, B. and W. W. Adams (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology 43: 599-626. Demmig‑Adams, B., W.W. Adams III, B.A. Logan and A. S. Verhoeven (1995) Xanthophyll cycle‑dependent energy dissipation and flexible photosystem II efficiency in plants acclimated to light stress. Australian Journal of Plant Physiology 22: 249-260. Demmig-Adams, B. and W.W. Adams III, (1996) The role of the xanthophyll cycle carotenoids in protection of photosynthesis. Trends in Plant Science 1: 21-26. Demmig-Adams, B., W.W. Adams III, D. H. Baker, B. A. Logan, D. R. Bowling and A. S. Verhoeven (1996) Using chloroplast fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum 98: 253-264. Ding, L., K. J. Wang, G. M. Jiang, Y. G. Li, C. D. Jiang, M. Z. Liu, S. L. Niu, and Y. Peng (2006) Diurnal variation of gas exchange, chlorophyll fluorescence,and xanthophyll cycle components of maize hybrids released in different years. Photosynthetica 44(1): 26-31. Dobrowski, S. Z., J. C. Pushnik, P. J. Zarco-Tejada and S. L. Ustin (2005) Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sensing of Environment 97: 403-414. Evain, S., J. Flexas, and I. Moya (2004) A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote Sensing of Environment 91: 175-185. Falqueto, A. R., D. M. Silva and R. V. Fontes (2008) Photosynthetic performance of mangroves Rhizophora mangle and Laguncularia racemosa under conditions. Revista Arvore 32(3): 577-582. Gamon, J. A., J. Penuelas and C. B. Field (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment 41: 35-44. Gamon, J. A., L. Serrano and R. Surfus (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112: 492-501. Garbulsky, M. F., J. Penuelas, D. Papale and I. Filella (2008) Remote estimation of carbon dioxide uptake by a Mediterranean forest. Global Change Biology 14: 2860-2867. Garrity, S. R., J. U. H. Eitel and L. A. Vierling (2011) Disentangling the relationships between plant pigments and the photochemical reflectance index reveals a new approach for remote estimation of carotenoid content. Remote Sensing of Environment 115: 628-635. Gilmore, A. M. (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiologia Plantarum 99: 197-209. Goh, C. H., S. M. Ko, S. Koh, Y. J. Kim and H. J. Bae (2012) Photosynthesis and environments: Photoinhibition and repair mechanisms in plants. Journal of Plant Biology 55: 93-101. Guo, X. R., K. F. Cao and Z. F. Xu (2006) Acclimation to irradiance in seedlings of three tropical rain forest Garcinia spesies after simulated gap formation. Photosynthetica 44(2): 193-201. Hu, Y. B., G. Y. Sun and X. C. Wang (2007) Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants. Journal of Plant Physiology 164: 959-968. Janka, E., O. Korner, E. Rosenqvist and C. O. Ottosen (2013) High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora). Plant Physiology and Biochemistry 67: 87-94. Jin, S. H., X. Q. Li, J. Y. Hu and J. G. Wang (2009) Cyclic electron flow around photosystem I is required for adaptation to high temperature in a subtropical forest tree, Ficus concinna. Journal of Zhejiang University Science B 10(10): 784-790. Kao, W. Y., C.N. Shih and T.T. Tsai (2004) Sensitivity to chilling temperatures and distribution differ in the mangrove species Kandelia candel and Avicennia marina. Tree Physiology 24: 859-864. Kathiresan, K., and B. L. Bingham (2001) Advances in marine biology. Biology of Mangroves and Mangrove Ecosystems 40: 81-251. Kato, M. C., K. Hikosaka, N. Hirotsu, A. Makino and T. Hirose (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiology 44(3): 318-325. Komatsua, M., H. Tobitaa, M. Watanabeb, K. Yazakia, T. Koikeb and M. Kitaoa (2013) Photosynthetic downregulation in leaves of the Japanese white birch grown under elevated CO2 concentration does not change their temperature-dependent susceptibility to photoinhibition. Physiologia Plantarum 147: 159-168. Krause, G. H., K. Winter, B. Krause, P. Jahns, M. Garcia, J. Aranda and A. Virgo (2010) High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Functional Plant Biology 37: 890-900. Krauss, K. W., C. E. Lovelock, K. L. McKee, L. Lo'pez-Hoffman, S. M. L. Ewe and W. P. Sousa (2008) Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany 89: 105-127. Kudoh, H. and K. Sonoike (2002) Irreversible damage to photosystem I by chilling in the light:cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215: 541-548. Lambrev, P. H., Y. Miloslavina, P. Jahns and A. R. Holzwarth (2012) On the relationship between non-photochemical quenching and photoprotection of photosystem II. Biochimica et Biophysica Acta 1817: 760-769. Lavaud, J. and B. Lepetit (2013) An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Biochimica et Biophysica Acta 1827(3): 294-302. Leakey, A. D. B., M. C. Press and J. D. Scholes (2003) High-temperature inhibition of photosynthesis is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling. Plant, Cell and Environment 26: 1681-1690. Lichtenthaler, H. K., C. Buschmann and M. Knapp (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43 (3): 379-393. MacKenzie, T. D. B., M. Krol, N. P. A. Huner and D. A. Campbell (2002) Seasonal changes in chlorophyll fluorescence quenching and the induction and capacity of the photoprotective xanthophyll cycle in Lobaria pulmonaria. Canadian Journal of Botany 80: 255-261. Macpherson, A. N., A. Telfer, J. Barber and T. G. Truscott (1993) Direct detection of singlet oxygen from isolated PSII reaction centers. Biochimica et Biophysica Acta 1143: 301-309. Medrano, H., J. Bota, A. Abadia, B. Sampol, J. M. Escalona and J. Flexas (2002) Effects of drought on light-energy dissipation mechanisms in high-light-acclimated, field-grown grapevines. Functional Plant Biology 29: 1197-1207. Moore, R.T., P.C. Miller, J. Ehlering and W. Lawrence (1973) Seasonal trends in gas-exchange characteristics of 3 mangrove species. Photosynthetica 7: 387-394. Muller, P., X. P. Li and K. K. Niyogi (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiology 125: 1558-1566. Nichol, C. J., U. Rascher, S. Matsubara and B. Osmond (2006) Assessing photosynthetic efficiency in an experimental mangrove canopy using remote sensing and chlorophyll fluorescence. Trees 20: 9-15. Osmond, C. B. (1981) Photorespiration and photoinhibition: some implications for the energetics of photosynthesis. Biochimica et Biophysica Acta 639: 77-98. Osorio, M. L., J. Osorio, A. C. Vieira, S. Goncalves and A. Romano (2011) Influence of enhanced temperature on photosynthesis, photooxidative damage, and antioxidant strategies in Ceratonia siliqua L. seedlings subjected to water deficit and rewatering. Photosynthetica 49(1): 3-12. Park, Y. I., W. S. Chow, C. B. Osmond and J. M. Anderson (1996) Electron transport to oxygen mitigates against the photoinactivation of photosystem II in vivo. Photosynthesis Research 50: 23-32. Parry, M. A. J., P. J. Andralojc, J. C. Scales, M. E. Salvucci, A. E. Carmo-Silva, H. Alonso and S. M. Whitney (2013) Rubisco activity and regulation as targets for crop improvement. Journal of Experimental Botany 64(3): 717-730. Partelli, F. L., H. D. Vieira, A. P. Viana, P. Batista-Santos, A. P. Rodrigues, A. E. Leitao and J. C. Ramalho (2009) Low temperature impact on photosynthetic parameters of coffee genotypes. Pesquisa Agropecuaria Brasileira 44(11): 1404-1415. Peguero-Pina, J. J., F. Morales, J. Flexas, E. Gil-Pelegrı'n and I. Moya (2008) Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under instense drought. Oecologia 156: 1-11. Pimentel, C., R. V. Ribeirob, E. C. Machadob, M. G. Dos Santosc, R. F. De Oliveira (2013) In vivo temperature limitations of photosynthesis in Phaseolus vulgaris L. Environmental and Experimental Botany 91: 84-89. Porcar-Castell, A., J. I. Garcia-Plazaola, C. J. Nichol, P. Kolari, B. Olascoaga, N. Kuusinen, B. Ferna'ndez-Marı'n, M. Pulkkinen, E. Juurola and E. Nikinmaa (2012) Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency. Oecologia 170: 313-323. Rahimzadeh-Bajgiran, P., M. Munehiro and K. Omasa (2012) Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages. Photosynthesis Research 113: 261-271. Reef, R., I. C. Feller and C. E. Lovelock (2010) Nutrition of mangroves. Tree Physiology 30: 1148-1160. Ribeiro, R. V., E. C. Machado and R. F. Oliveira (2006) Temperature response of photosynthesis and its interaction with light intensity in sweet orange leaf discs under non-photorespiratory condition. Ciencia Agrotecnologia 30(4): 670-678. Ripullone, F., A. R. Rivelli, R. Baraldi, R. Guarini, R. Guerrieri, F. Magnani, J. Penuelas, S. Raddi and M. Borghetti (2011) Effectiveness of the photochemical reflectance index to track photosynthetic activity over a range of forest tree species and plant water statuses. Functional Plant Biology 38: 177-186. Ruelland, E. and A. Zachowski (2010) How plants sense temperature. Environmental and Experimental Botany 69: 225-232. Salvucci, M. E. and S. J. Crafts-Brandner (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiology 134: 1460-1470. Shahenshah, Y. Yoshizumi, M. S. Li and I. Akihiro (2010) Assessment of photochemical reflectance index as a tool for evaluation of chlorophyll fluorescence parameters in cotton and peanut cultivars under water stress condition. Agricultural Sciences in China 9(5): 662-670. Suzuki, K., K. Nagasuga and M. Okada (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant and Cell Physiology 49: 433-442. Taiz, L. and E. Zeiger (2002) Plant Physiology. 3rd ed. Sinauer Associates. Inc. p.227-249. Tezara, W., D. Martinez, E. Rengifo and A. Herrera (2003) Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Annals of Botany. 92: 757-765. Theocharis, A., C. Cle'ment and E. A. Barka (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235: 1091-1105. Triantaphylides, C. and M. Havaux (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends in Plant Science14: 219-228. Veres, S., V. R. Toth, R. Laposi, V. Olah, G. Lakatos and I. Meszaros (2006) Carotenoid composition and photochemical activity of four sandy grassland species. Photosynthetica 44: 255-261. Weng, J. H. and M. F. Lai (2005) Estimating heat tolerance among plant species by two chlorophyll fluorescence parameters. Photosynthetica 43 (3): 439-444. Weng, J. H., Y. N. Chen and T. S. Liao (2006) Relationships between chlorophyll fluorescence parameters and photochemical reflectance index of tree species adapted to different temperature regimes. Functional Plant Biology 33: 241-246. Weng, J. H., L. H. Jhaung, R. J. Lin and H. Y. Chen (2010) Relationship between photochemical efficiency of photosystem II and the photochemical reflectance index of mango tree: merging data from different illuminations, seasons and leaf colors. Tree Physiology 30: 469-478. Xue, W., X. Y. Li, L. S. Lin, Y. J. Wang and L. Li (2011) Effects of elevated temperature on photosynthesis in desert plant Alhagi sparsifolia S. Photosynthetica 49(3): 435-447. Yamori, W., N. Sakata, Y. Suzuki, T. Shikanai and A. Makino (2011) Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. The Plant Journal 68: 966-976. Ying, Y. Q., J. F. Wei, N. N. Xie, Q. Jiang and W. Fang (2011) Effects of natural low temperature stress on physiological and biochemical properties of phyllostachys edulis. Journal of Nanjing Forestry University 35(3): 133-136. Youssef, T. and P. Saenger (1998) Photosynthetic gas exchange and water use in tropical and subtropical populations of the mangrove Aegiceras corniculatum. Marine and Freshwater Research 49(4): 329-334. Yu, L. L., T. Y. He, L.Y. Chen, J. D. Rong and Y. S. Zheng (2014) Changes of physiological and biochemical indexes of Rhododendron hybridum under artificial low temperature stress. Journal of Agriculture 4(1): 48-53. Zhang, S. B. (2010) Temperature acclimation of photosynthesis in Meconopsis horridula var. racemosa Prain. Botanical Studies 51: 457-464.
摘要: 
為瞭解海茄苳 (Avicennia marina) 與欖李 (Lumnitzera racemosa) 於不同溫度下的光合作用、葉綠素螢光反應及光保護策略,本研究選擇台南市北門區雙春之海茄苳及欖李與新竹縣新豐鄉紅毛港之海茄苳,測定15-35oC五種不同溫度對兩地區之海茄苳與欖李之淨光合作用速率及葉綠素螢光等生理反應之影響。研究之結果歸納如下述:雙春之海茄苳及欖李於低溫處理時受到氣孔及非氣孔之限制,而新豐海茄苳僅受到氣孔限制。葉綠素螢光參數表示光合作用光反應之部分,本試驗結果顯示三種材料之ETR、qP、ΦPSII及Fv'/Fm'在15oC處理時為最低值,與高於15oC以上之各處理間達顯著差異 (p < 0.05),表示於低溫時三種材料於光反應之部分皆受到抑制。且於15oC時受光抑制之比例最大,其中欖李較海茄苳更形嚴重。而光保護之結果顯示,新豐海茄苳與雙春海茄苳之差異為地理位置與自然環境低溫之影響,相同生長於雙春之海茄苳與欖李之差異表示海茄苳較欖李耐低溫。由可溶性蛋白之結果可知,隨著溫度降低可溶性蛋白含量有增加的趨勢,在樹種間的差異,雙春欖李之可溶性蛋白含量於20oC處理者為較大值,與高於20oC以上之處理間達到顯著差異 (p < 0.05),而雙春海茄苳之可溶性蛋白含量則在15oC處理者為最大值,與高於15oC以上之處理間達到顯著差異 (p < 0.05),表示欖李對於低溫較海茄苳敏感。由色素分析之結果顯示,於樹種間比較,欖李之類胡蘿蔔素於各溫度處理皆高於海茄苳,其與葉綠素螢光之NPQ變化亦如此,表示以非光化學消散對欖李為重要的消散路徑。

To understand the response of photosynthesis, chlorophyll fluorescence, and photoprotection strategy in Avicennia marina and Lumnitzera racemosa to temperatures, the A. marina and L. racemosa in Shuangchun, Beimen Dist., Tainan City and the A. marina in the HongMao Harbor, Sinfong Township, Hsinchu County were chosen as the sample materials in this study. The net photosynthetic rate and chlorophyll fluorescence response under 5 different conditions between 15-35oC were measured. The result showed that the A. marina and L. racemosa in Shuangchun would suffer both of the stoma and non-stoma limitation under the low temperature, and the A. marina in Sinfong would suffer the stoma limitation only. The photosynthetic light reactions based on the chlorophyll fluorescence parameters showed that the ETR, qP, ΦPSII, and Fv'/Fm' of the 3 materials in this study all displayed the least value under 15oC with significant differences (p < 0.05) between that and other treats above 15oC. It demonstrated that the light reactions of all the 3 materials were inhibited under the low temperature. The photoinhibition acted the worst under 15oC, and the L. racemosa was affected more than the A. marina. According to the photoprotection performance, the A. marina in different habitat performed differently because of the geographic position and the natural low temperature. However, the A. marina and L. racemosa both growing in Shuangchun showed that the A. marina was more low-temperature-tolerable than the L. racemosa. The soluble protein analysis showed that the contents of soluble protein increased with the temperature decreased. There were some differences between species. The L. racemosa in Shuangchun had the most content of soluble protein under 20oC with significant differences (p < 0.05) between that and other treats above 20oC. But the A. marina in Shuangchun had the most content of soluble protein under 15oC with significant differences (p < 0.05) between that and other treats above 15oC. It demonstrated that the L. racemosa was more sensitive to the low temperature than the A. marina. Through the plant pigment analysis, it was found that the L. racemosa always had more carotenoids than the A. marina had under every treat. It showed the same trend by the NPQ of chlorophyll fluorescence. Therefore, it was supposed that the non-photochemical quenching was an important dissipation pathway to the L. racemosa.
URI: http://hdl.handle.net/11455/89258
Rights: 同意授權瀏覽/列印電子全文服務,2016-02-04起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101033015-1.pdf1.23 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.