Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89267
標題: 竹齡及高度對孟宗竹及其竹展開板物理及機械性質之影響
Effects of age and culm height position on physical and mechanical properties of moso bamboo (Phyllostachys pubescens) and its flattened board
作者: Shi-Yang Wu
吳仕揚
關鍵字: 孟宗竹;竹齡;竹高度;竹展開板;物理性質;機械性質;Moso bamboo (Phyllostachys pubescens Mazel);Bamboo age;Bamboo culm height;Flattened bamboo board;Physical property;Mechanical property
引用: 林曉洪、林盈宏(2011)熱處理木材之性質。林業研究季刊33(1): 91–108。 李志璇(2012)三種熱處理介質對孟宗竹基本性質之影響。國立中興大學森林學系碩士論文。1頁。 路統信(1986)我國竹類植物及其地理分佈。現代育林2(1):85–94。 許妙戎、陳載永、陳合進、徐俊雄(2000)木材表面緻密化之研究。林業研究季刊22:1–12。 趙有科、馮上環、黃榮鳳(2010)木材彎曲工藝研究綜述。世界林業研究23(6):40–44。 楊淑敏、江澤慧、任海青、費本華(2010)利用X-射線衍射法測定竹材纖維素結晶度。東北林業大學學報38(8):75–77。 王瀛生、唐讓雷(1988)引進竹材之構造研究。林產工業7(1):53–63。 王瀛生、吳孟玲(2010)台灣竹材替代木質材料展現竹之美。林業研究專刊17(4):54–60。 文化部(2014)台灣竹產業基礎調查與竹材研發調查。2014年12月15日。取自:http://cci.culture.tw/cci/cci/market_detail.php?sn=9728 Akgul, M., E. Gumuşkaya and S. Korkut (2007) Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludağ fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Sci. Technol. 41(3):281–289. Bariska, M. (1975) Collapse phenomena in beechwood during and after NH3-impregnation. Wood Sci. Technol. 9:293–306. Correal, J. F. and J. Arbelaez (2010) Influence of age and height position on colombian Guadua angustifolia bamboo mechanical properties. Maderas Cienc. Tecnol. 12(2):105–113. Dilik, T. and S. Hiziroglu (2012) Bonding strength of heat treated compressed eastern redcedar wood. Mater. Des. 42:317–320. Diouf, P. N., T. Stevanovicb, A. Cloutierb, C. H. Fangb, P. Blanchetc, A. Koubaad and N. Mariottib (2011) Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Appl. Surf. Sci. 257(8) :3558–3564. Esteves, B., A. V. Marques, I. Domingos and H. Pereira (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 41:193–207. Fang, C. H., N. Mariotti, A. Cloutier, A. Koubaa and P. Blanchet (2012) Densification of wood veneers by compression combined with heat and steam. Eur. J. Wood Wood Prod. 70:155–163. Gritsch, C. S., G. Kleist and R. J. Murphy (2004) Developmental changes in cell wall structure of phloem fibres of the bamboo Dendrocalamus asper. Ann. Bot. 94:497–505. Gupta, R. and Y. Y. Lee (2010) Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresour. Technol. 101(21):8185–8191. Hakkou, M., M. Petrissans, A. Zoulalian and P. Gerardin (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym. Degrad. Stab. 89(1):1–5. Han, M., S. K. Moon, Y. Kim, Y. Kim, B. Chung and G. W. Choi (2009) Bioethanol production from ammonia percolated wheat straw. Biotechnol. Bioprocess Eng. 14(5):606–611. Kamruzzaman, M., S. K. Saha, A. K. Bose and M. N. Islam (2008) Effects of age and height on physical and mechanical properties of bamboo. J. Trop. For. Sci. 20(3):211–217. Kudela, J. (2009) Permanent changes to structure and properties of beech and ash wood after hydrothermal plasticization. Part I. Changes to selected properties. Fol. For. Pol. 40:3–14. Kim, J. W., K. S. Kim, J. S. Lee, S. M. Park, H. Y. Cho, J. C. Park and J. S. Kim (2011) Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresour. Technol. 102(19):8992–8999. Kim, T. H., F. Taylor and K. B. Hicks (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour. Technol. 99(13):5694–5702. Kutnar, A., F. A. Kamke and M. Sernek (2008) The mechanical properties of densified VTC wood relevant for structural composites. Holz Roh Werkst. 66:439–446. Kutnar, A., F. A. Kamke and M. Sernek (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci. Technol. 43(1):57–68. Kutnar, A. and F. A. Kamke (2012a) Compression of wood under saturated steam, superheated steam, and transient conditions at 150oC, 160oC, and 170oC. Wood Sci. Technol. 46(4):73–88. Kutnar, A. and F. A. Kamke (2012b) Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Sci. Technol. 46(5):953–964. Laine, K., L. Rautkari, M. Hughes and A. Kutnar (2013) Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. Eur. J. Wood Wood Prod. 71(1):17–23. Liese, W. (1985) Bamboos - Biology, Silvics, Properties, Utilization. pp. 196–208. Li, X. B., T. F. Shupe., G. F. Peter., C. Y. Hse and T. L. Eberhardt (2007) Chemical changes with maturation of the bamboo Species phyllostachys pubescens. J. Trop. For. Sci. 19(1):6–12. Liu, J., H. Y. Zhang, L. Chrusciel, B. Na and X. N. Lu (2013) Study on a bamboo stressed flattening process. Eur. J. Wood Wood Prod. 71:291–296. Lo, T. Y., H. Z. Cui and H. C. Leung (2004) The effect of fiber density on strength capacity of bamboo. Mater. Lett. 58 :2595–2598. Mesta-Kortelainen, S., T. Antikainen and P. Viitaniemi (2006) The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170oC, 190oC and 230oC. Holz Roh Werkst. 64(3):192–197. Miklečić, J., N. Španić and V. Jirouš-Rajković (2012) Wood color changes by ammonia fuming. BioResources 7(3):3767–3778. Mittal, A., R. Katahira, M. E. Himmel and D. K. Johnson (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol. Biofuels 4:41–56. Morsing, N. (2000) Densification of wood—the influence of hygrothermal treatment on compression of beech perpendicular to the grain. Doctor Thesis. Department of Structural Engineering and Materials Technical University of Denmark. Nakajima, M., Y. Furuta, Y. Ishimaru and M. Ohkoshi (2009) Characteristics of bamboo tissue in relation to cooling set. J. Wood Sci. 55:107–112. Nakajima, M., K. Kojiro, H. Sugimoto, T. Miki and K. Kanayama (2011) Studies on bamboo for sustainable and advanced utilization. Energy 36:2049–2054. Nguyen, T. C., A. Wagenfuhr, L. X. Phuong, V. H. Dai, M. Bremer and S. Fischer (2012) The effects of thermal modification on the properties of two Vietnamese bamboo species, PartⅠ:Effects on physical properties. BioResources 7(4):5355–5365. Parkkeeree, T., N. Matan and B. Kyokongl (2014) Flattening of half tubular bamboo culms and fixation of bamboo boards. J. Trop. For. Sci. 26(1): 101–114. Rautkari, L., M. Properzi, F. Pichelin and M. Hughes (2010) Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci. Technol. 44:679–691. Salim, R., W. Razak and A. Zaidon (2008) Effect of oil heat treatment on chemical constituents of semantan bamboo (Gigantochloa scortechinii Gamble). J. Sust. Dev. 1:91–98. Salim, R., Z. Ashaari, H. W. Samsi, R. Wahab and R. H. Alamjuri (2010) Effect of oil heat treatment on physical properties of semantan bamboo (Gigantochloa scortechinii Gamble). Mod. Appl. Sci. 4:107–113. Sattar, M. A., M. F. Kabir and D. K. Bhattacharjee (1994) Physical and mechanical properties of Bambusa arundinacea, Bambusa longispiculata, Bambusa vulgaris and Dendrocalamus giganteus. Bangl J. For. Sci. 23: 20–25. Shao, Z. P., L. Zhou, Y. M. Liu, Z. M. Wu and C. Arnaud (2010) Differences in structure and strength between internode and node sections of moso bamboo. J. Trop. For. Sci. 22(2):133–138. Shiraishi, N. (1991) Wood plasticization. In D. N.-S. Hon and N. Shiraishi eds. 'Wood and Cellulosic Chemistry'. Marcel Dekker, New York, pp. 861–906. Strassberger, Z., P. Prinsen, F. van der Klis, D. S. van Es, S. Tanase and G. Rothenbery (2014) Lignin solubilisation and gentle fractionation in liquid ammonia. Green Chem. 17:325–334. Wahab, R., A. Mohamad, H. W. Samsi, A. A. M. Yunus and J. Moktar (2006) Physical characteristics, anatomy and properties of managed Gigantochloa scortechinii natural bamboo stands. J. Plant Sci. 1(2):144–153. Weigl, M., J. Pockl and M. Grabner (2009) Selected properties of gas phase ammonia treated wood. Eur. J. Wood Wood Prod. 67(1):103–109. Weigl, M., U. Muller, R. Wimmer and C. Hansmann (2012) Ammonia vs. thermally modified timber—comparison of physical and mechanical properties. Eur. J. Wood Wood Prod. 70:233–239. Wolcott, M. P., F. A. Kamke and D. A. Dillard (1994) Fundamental aspects of wood deformation pertaining to manufacture of wood-base composites. Wood Fiber Sci. 26(4):496–511. Zhao, R. J., Z. H. Jiang and T. F. Shupe (2010) Effects of steam treatment on bending properties and chemical composition of moso bamboo (Phyllostachys pubescens). J. Trop. For. Sci. 22(2):197–201. Zhang, Y. M., Y. L. Yu and W. J. Yu (2013) Effect of thermal treatment on the physical and mechanical properties of Phyllostachys pubescen bamboo. Eur. J. Wood Wood Prod. 71(1):61–67.
摘要: 
本研究除比較不同竹齡(2–4年生)及竹稈高度(基部–梢部)之孟宗竹(Phyllostachys pubescens Mazel)物理及機械性質之外,並探討二者對其竹展開板性質及展平率(Flattening ratio)之影響。此外,並利用X-ray繞射儀(X-ray diffractometry, XRD)及全反射式傅立葉紅外線光譜儀(Attenuated total reflectance-Fourier transform infrared spectrometer, ATR–FTIR),分析竹材展平後之結晶度及官能基變化。試驗結果顯示,竹材之生材含水率以未成熟之竹稈(2年生)較高,且隨竹稈高度之增加有減少之現象;密度及抗彎強度則係以成熟竹稈(3及4年生)之梢部較高。抗彎彈性模數同樣以成熟竹稈為高,但與竹稈高度無顯著之關聯性。尺寸安定性方面,24 h吸水率係以成熟竹稈較低,竹稈高度則無顯著影響;而吸水膨脹率則為徑向>弦向>縱向。
另一方面,竹材經展平後,密度顯著提升,而平衡含水率則下降,且外觀顏色加深,並呈現較平滑的表面。竹展開板之密度、抗彎強度及24 h吸水率、吸水厚度膨脹率及回彈率皆以成熟竹稈製備者表現為佳,質量損失率亦較低。另外,經過氨水處理後,竹展開板之質量損失率、抗彎性質及表面顏色變化均較未經氨水處理之對照組高,並具較佳之尺寸安定性。而在展平率方面,氨水濃度在20%以上時,具有較佳之表面品質,且展平率可達95%以上。再者,經展平處理後,由於非結晶型(Non-crystalline)多醣類的降解,試材結晶度有提升現象,且隨氨水濃度增加而增加。而進一步以ATR-FTIR比較氨水處理組及無氨水處理對照組之官能基變化時發現,僅處理組之半纖維素訊號明顯減少,顯示氨水處理會促使試材組成分之降解。

The purpose of this study is not only to investigate the effects of age (2 to 4 years old) and culm height position (bottom to top) on physical and mechanical properties of moso bamboo (Phyllostachys pubescens Mazel) and its flattened bamboo board, but also to evaluate the flattening ratio after flattening treatment. In addition, the changes in crystallinity and functional group of bamboo were determined by X-ray diffractometry (XRD) and attenuated total reflectance-Fourier transform infrared spectrometer (ATR–FTIR), respectively. The results showed that the green moisture content was higher in the younger bamboo (2 years old) and decreased from bottom to top positions. The density and flexural strength were higher at the top position of older bamboo (3–4 years old), and the modulus of elasticity of older bamboo was higher than that of younger bamboo. In terms of the dimensional stability, the 24 h water absorption was lower for older bamboo, but there were no significant difference among various culm height positions. As for the dimensional swelling, it was decreased in the order of radial, tangential, and longitudinal directions of bamboo.
On the other hand, after flattening treatment, the density of flattened bamboo board increased significantly, whereas the equilibrium moisture content decreased. Furthermore, the surface of the specimens became darker and smoother. The density, flexural strength, 24 h water absorption, thickness swelling, and springback behaviors of flattened bamboo board were better while using older bamboo, and that also exhibited a lower mass loss. In addition, after pretreatment with ammonia solution, the mass loss, flexural properties, surface color change, and dimensional stability were higher than those of untreated control group. In terms of the flattening ratio, when the concentration of ammonia solution was above 20%, the flattened bamboo board had better surface quality, and the flattening ratio could be reached to more than 95%. Moreover, after flattening treatment, the crystallinity of flattened board increased with increasing the ammonia solution concentration due to the degradation of non-crystalline polysaccharides. The specific signals of bamboo hemicellulose decreased significantly after pretreatment with the ammonia solution, as revealed by ATR-FTIR analysis. This result shows that ammonia solution could degrade the components of bamboo specimens during flattening process.
URI: http://hdl.handle.net/11455/89267
Rights: 同意授權瀏覽/列印電子全文服務,2018-02-05起公開。
Appears in Collections:森林學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101033026-1.pdf3.47 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.