Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89268
標題: 以叢枝菌根菌增加鎘汙染地植生改善法效率之研究
Study on Efficiency of Phytoremediation by Arbuscular Mycorrhizal Fungi tree seedlings planted in Cd-polluted Soils
作者: Shih-Hsin Chang
張世炘
關鍵字: 植生改善法;叢枝菌根菌;平地造林;鎘汙染;Phytoremediation;Aarbuscular mycorrhizal fungi;Plain-planted species;cadmium contamination
引用: 孔凡美、史衍璽、馮固、李曉林、許鵬亮 (2007) AM菌對三葉草吸收、累積重金屬的影響。中國生態農業學報 15(3): 92-96。 吳依縈 (2012) 10 種平地造林樹種在鎘汙染地植生萃取潛能之評估。國立中興大學森林學系碩士論文。共 62 頁。 吳敏煌 (2001) 土壤汙染管制標準之研訂。台灣土壤及地下水環境保護協會簡訊1: 9-14。 吳翊豪 (2009) 六種植物吸收重金屬之植生復育法研究。朝陽科技大學環境工程與管理系碩士論文。共95頁。 吳繼光、林素禎 (1998) 叢枝菌根菌應用技術手冊。台灣省農業試驗所印行,行政院農業委員會資助。 洪彥昌 (1997) 多種重金屬在土壤中之擴散分佈實驗。中原大學土木工程研究所碩士論文。共97頁。 胡振琪、楊秀紅、高愛林、危向峰 (2007) 鎘污染土壤的菌根修復研究。中國礦業大學學報 36(2): 237-240。 唐世榮、B. M. Wilke (1999) 植物修復技術與農業生物環境工程。農業工程學報 15(2): 21-26。 孫琴、王曉蓉、丁士明 (2005) 超積累植物吸收重金屬的根際效應研究進展。生態學雜誌 24(1): 30-36。 翁震炘 (2006) 農作物重金屬汙染監測與管制措施。農政與農情 169: 1-3。 陳尊賢 (1995) 台灣農家要覽-農作篇(一) 577-581。 陳尊賢 (2001) 土壤整治技術。科學發展月刊 29(3): 207-210。 黃脩惠、邱志郁、陳財輝、陳建德 (2005) 鎘逆境對水稻幼苗脯胺酸累積和水分傳輸之影響。台灣農業化學與食品科學 43 (3): 193-199。 黃瑞彰、江汶錦、林經偉、卓家榮 (2011) 菌根菌的特性及田間應用技術。台南區農業專訊 75: 14-19。 溫源淼 (2006) 以植物修復技術處理遭受重金屬鎘污染土壤之研究。國立中山大學海洋環境及工程學系碩士論文。共94頁。 董萌 (2011) 南洞庭湖濕地土壤福鎘 (Cd) 污染與萎篙植物修復研究。湖南農業大學生態學系研究所博士論文。共 97 頁。 廖睿宏 (2005) 土壤溶液中 Cl-、SO42- 與黃酸根陰離子對 Cd2+ 濃度之影響。朝陽科技大學環境工程與管理系碩士論文。共136頁。 劉業經、呂福原、歐辰雄 (1994) 台灣樹木誌。國立中興大學農學院出版委員會。 鮑桐、廉梅花、孫麗娜、孫鐵珩、蘇磊、雷剛 (2008) 重金屬污染土壤植物修復研究進展。生態環境 17(2): 858-865。 Baker, D. E. and M. C. Amacher (1982) Nickel, copper, zinc, and cadmium. In: Page et al. (eds.) Methods of Soil Analysis. Part II. Chemical and Microbiological Properties 2nd ed. ASA. CSSA. SSSA. Madison, Wisconsin. Blaylock, M. J., D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley and I. Raskin (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environment Science Technology 31: 860-865. Caris, C., W. H?rdt, H. J. Hawkins, V. R?mheld and E. George (1998) Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8: 35-39. Enkhtuya, B., J. Rydlova and M. Vosatka (2000) Effectiveness of indigenous and non-indigenous isolates or arbuscular mycorrhizal fungi in soils from degraded ecosystem and mam-made haditats. Applied Soil Ecology 14: 201-211. Glass, D. J. (2000) Economic potential of phytoremediation. In: Raskin I and B. Ensley (eds) Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. Wiley, New York. Jabeen, R., A. Ahmad and M. Iqbal (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Botanical Review 75: 339-364. Kacalkova, L., P. Tlustos and J. Szakova (2009) Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant, Soil and Environment 55 (7): 295-304. Lestan, D., C. L. Luo and X. D. Li (2008) The use chelating agents in the remediaition of matel-contaminated soil. Environmental Pollution 153: 3-13. Liang, H. M., T. H. Lin, J. M. Chiou and K. C. Yeh (2009) Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environmental Pollution 157: 1945-1952. Liu, L. Z., Z. Q. Gong, Y. L. Zhang and P. J. Li (2011) Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi. Pedosphere 21(3): 319-327. MacDonald, C. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78. McLean, E. O. (1982) Soil pH and lime requirement. In: Page et al. (eds.) Methods of Soil Analysis. Part II. Chemical and Microbiological Properties 2nd ed. ASA. CSSA. SSSA. Madison, Wisconsin. Meharg, A. A., and J. Hartley-Whitaker (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154: 29-43. Miguel, A. P., R. D. Beatriz and F. P. Mercedes (2010) Effect of cadmium ion excess over cell structure and functioning of Zea mays and Hordeum vulgare. Biochemical Systematics and Ecology 38: 285-291. Moore, P. D. and S. B. Chapman (1986) Methods in plant ecology. 2nd ed. Blackwell Scientific Publications. Oxford, London, Edinburgh. Nehnevajova, E., R. Herzig, G. Federer, K. Erismann and J. Schwitzgu?ebel (2005) Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. International Journal of Phytoremediation 7(4): 337-349. Olsen, S. R. and L. E. Sommers (1982) Phosphorus. In: Page et al. (eds.) Methods of Soil Analysis. Part II. Chemical and Microbiological Properties 2nd ed. ASA. CSSA. SSSA. Madison, Wisconsin. Padmavathiamma, P. K. and L.Y Li (2007) Phytoremediation Technology: Hyper-accumulation metals in plants. Water Air Soil Pollut 184:105-126. Pugh, R. E. D. G. Dick and A. L. Fredeen (2002) Heavy metal (Pb, Zn, Cd, Fe and Cu) contents of plant foliage near the Anvil range lead/zinc mine, Faro, Yukon Territory. Ecotoxicology and Environmental Safety 52: 273-279. Pulford, I. D. and C. Watson (2003) Phytoremediation of heavy metal-contaminated land by trees- a review. Environment International 29: 529-540. Raskin, I., P. B. A. N. Kumar, S. Dushenkoy and D. E. Salt (1994) Bioconcentration of heavy metals by plants. Current Opinion Biotechnology 5: 285-290. Rosalind, F. K., A. Royle, P. D. Putwain and N. M. Dickinson (2006) Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial. Environmental Pollution 143: 318-326. Salt, D. E. and U. Kramer (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin, I., and B. Ensley (eds) Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. Wiley, New York. Shuman, L. M. (1985) Fractionation method for soil microelements. Soil Science 140: 11-22. Susana, R. G., M. N. Enrique and A. M. Luis (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. Journal of Hazardous Materials 184: 299-307. Tessier, A., P. G. C. Campbell and M. Bisson (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51: 845-851. Tian, D., F. Zhu, W. Yan, X. Fang, W. Xiang, X. Deng, G. Wang and C. Peng (2009) Heavy metal accumulation by panicled goldenrain tree (Koelreuteria paniculata) and common elaeocarpus (Elaeocarpus decipens) in abandoned mine soil in southern China. Journal of Environmental Sciences 21: 340-345. Vamerali, T., M. Bandiera and G. Mosca (2010) Field crops for phytoremediation of metal- contaminated land. Environmental Chemistry Letters 8: 1-17. Walker, D. J., M. P. Bernal and E. Correal (2007) The Influence of heavy metals and mineral nutrient supply on bituminaria bituminosa. Water Air and Soil Pollution 184: 335-345. Yoon, J., X. Cao and O. Zhou (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science Total Environment 368: 456-464. Zhao, F. J., E. Lombi and S. P. Mcgrath (2003) Assessing potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil 249: 37-43.
摘要: 
本研究選定 5 種常見的平地造林樹種進行菌根接種,栽植於彰化縣政府公告列管受重金屬鎘汙染之農田,測試及觀察接種菌根菌是否能提升宿主植物對於重金屬的吸收能力,達到提升植生改善法效率的功效。試驗樹種包括烏? (Sapium sebiferum)、苦楝 (Melia azedarach)、櫸木 (Zelkova serrata)、黃連木 (Pistacia chinensis) 及光臘樹 (Fraxinus formosana)等 5 種。試驗苗木經接種分為菌根處理及非菌根處理,於苗圃接種培育兩個月,待菌根感染成功後,栽植於試驗地進行為期 8 個月之試驗,試驗結束後以逢機取樣方式對菌根苗與非菌根苗進行採樣,以了解接種菌根菌是否能影響苗木體內鎘的濃度和鎘的累積量,並同時檢測試驗苗木植物體內氮、鈣、鎂等養分狀況。另外以非根域土為背景值,比較並分析菌根苗及非菌根苗根域土的鎘的濃度、有效磷及氮含量。藉以分析了解接種菌根菌是否能提升植生改善法的效率。
結果顯示,試驗地之氮含量稍微偏低,因此試驗苗木植物體內氮含量也偏低。試驗苗木經接種菌根菌處理後,在生長量以及植物體內重金屬濃度、重金屬累積量等方面普遍優於無接種菌根菌之苗木。栽植於鎘污染試驗地 8 個月後,5 種平地造林樹種中單株苗木對 Cd 累積量最高者依次為烏?之菌根苗 (4.80 mg/株)、黃連木之菌根苗 (4.34 mg/株) 以及櫸木之菌根苗 (3.90 mg/株)。各樹種植物體內的 Ca 含量皆有下降之現象,但菌根苗之 Ca 含量下降幅度較非菌根苗小,在根系部分尤其明顯,顯示接種菌根應有協助試驗植物抵抗鎘汙染逆境並增加苗木累積鎘的能力。

Five mycorrhizde and non- mycorrhized were selected and plain-planted species planted in the cadmium contaminated farmland which was in the controlled list claimed by Changhua County Government. The aim if this study is to test and observe whether inoculated mycorrhizal fungi can improve host plant growth and adjuet metal absorption capacity, and finally enhance the efficiency of phytoremediation. The five tested treespecies, were Sapium sebiferum, Melia azedarach, Zelkova serrata, Pistacia chinensis, and Fraxinus formosana.The experimental seedlings were categorized to mycorrhizal treatment and non-mycorrhizal treatment after inoculation, the inoculated and non-inoculated seedlings were cultivated for two months in the nusery. After successful mycorrhizal infection, they were transplanted to Cd-polluted experimental field for a period of eight months. Random sampling of mycorrhizal and non-mycorrhizal seedlings were taken to see if inoculated mycorrhizal fungi could affect the cadmium accumulation and cadmium concentrations in the plant tissues. The nutrition status of nitrogen, calcium, magnesium were analysed at the same time. In addition, the non-rhizosphere soils were taken as a background value which we could use to analyze the cadmium concentration, phosphorus and nitrogen content in the soils and compared to mycorrhizal and non-mycorrhizal seedlings grown in the Cd-polluted soils.
The result showed that a slightly lower amount of nitrogen was found in the Cd-polluted field, and it was the same for the planted seedlings. After the harvest, we found the mycorrhizal seeding generally with a higher amount of growth, cadmium concentrations and accumulation in plants than there of non-inoculated mycorrhizal seedlings. After 8 month is growth in the cadmium polluted land, the Cd accumulation amount in each single seedling in the five plain-planted species could be ranked from high to low as follows: Sapium sebiferum (4.80 mg/tree), Pistacia chinensis (4.34 mg/tree), and followed by Zelkova serrata (3.90 mg/tree). The Ca amount in each treespecies tended to drop, and there was a less drop range in mycorrhizal seedlings than in non-mycorrhizal seedlings, especially in the root part. The study above showed that mycorrhizal seedings could imporve the host plant growth against cadmium pollution and increase the capability of cadmium accumulation in the seedling.
URI: http://hdl.handle.net/11455/89268
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7100033013-1.pdf1.3 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.