Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89273
標題: Evaluation of ring characteristics of hardwoods by wounding window method
創傷開窗法應用於闊葉樹年輪特徵之研究
作者: Yun-Chih Chen
陳昀芝
關鍵字: 創傷開窗法;闊葉樹;生長量;樹輪特徵;樹輪密度;Wounding window method;Hardwood;Growth increment;Ring characteristic;Ring density
引用: 王松永(1983)商用木材。 王松永、丁昭義(1984)林產學(上冊)。 中央氣象局(2015)中央氣象局全球資訊網-氣候統計。 李佳如、林振榮、曾家琳、蔡明哲(2008)樟樹及臺灣櫸的年輪特徵值對動彈性模數及抗壓強度之影響。台大實驗林研究報告 22(3): 197-209。 詹明勳(1999)軟X-射線-微密度計應用於台灣雲杉立木年輪寬度及密度曲線分析之探討。中華林學季刊 32(4): 555-567。 劉業經、呂福原、歐辰雄(1994)台灣樹木誌。 鍾智昕、林世宗、吳四印(2006)電腦影像處理在樹輪辨識上的應用。宜蘭大學生物資源學刊 3(1): 33-41。 Borchert, R. (1999) Climatic periodicity, phenology and cambium activity in tropical dry forest trees. International Association of Wood Anatomists. 20: 239-247. Borchert, R., G. Rivera and W. Hagnauer (2002) Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica. 34: 27-39. Brienen, R. J. W. and P. A. Zuidema (2005) Relating tree growth to rainfall in Bolivian rain forests: A test for six species using tree ring analysis. Oecologia. 146: 1-12. Callado, C. H., S. J. S. Neto, F. R. Scarano and C. G. Costa (2001) Periodicity of growth ring in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees. 15: 492-497. Conner, W. S. (1999) A computer vision based tree ring analysis and dating system. A thesis of depm1ment of electrical & computer engineering of the university of Arizona in the graduate college. p.10-20. Fahn, A., J. Burley, K. A. Longman and A. Mariaux (1981) Possible contributions of wood anatomy to the determination of the age of tropical trees. In: F. H. Bormann and G. Berlyn (eds), Age and growth rate of tropical trees: new directions for research Bull. 94: 31-54. Fritts, H. C. (1976) Tree rings and climate. Academic Press, London. Gourlay, I. D. (1995) The definition of seasonal growth zone in some African Acacia species – a review. International Association of Wood Anatomists. 16: 353-359. Jacoby, G. C. (1989) Overview of tree-ring analysis in tropical regions. International Association of Wood Anatomists. 10: 99-108. Knapic, S., J. L. Louzada, S. Leal and H. Pereira (2007) Radial variation of wood density components and ring width in cork oak trees. Annals of Forest Science. 64: 211-218. Leal, S., V. B. Sousa and H. Pereira (2007) Radial variation of vessel size and distribution in cork oak wood (Quercus suber). Wood Science and Technology. 41: 339–350. Leal, S., V. B. Sousa, S. Knapic, J. L. Louzada and H. Pereira (2011) Vessel size and number are contributors to define wood density in cork oak. European Journal of Forest Research. 130: 1023-1029. Lisi, C. S., M. T. Fo, P. C. Botosso, F. A. Roig, V. R. B. Maria, L. Ferreira-Fedele and A. R. A. Voigt (2008) Tree-ring formation, radial increment periodicity and phenology of tree species from a seasonal semi-deciduous forest in southern Brazil. International Association of Wood Anatomists. 29: 189-207. Mariaux, A. (1967–1968) Les cernes dans les bois tropicaux africains, nature et périodicité. Boiset Forêts des Tropiques No. 113: 3-14; No. 114-23-37. Matisons, R., D. Elferts and G. Brumelis (2013) Pointer years in tree-ring width and earlywood-vessel area time series of Quercus robur—Relation with climate factors near its northern distribution limit. Dendrochronologia. 31: 129-139. Polge, H. (1970) The use of X-ray densitometric methods in dendrochronology. Tree-Ring Bulletin. 30: 1-4. QMS (1999) QMS Tree Ring Analyzer Users Guide Model QTRS-01X, Quintek Measurement Systems, Inc. Knoxville, TN, USA. Rinn, F., F. H. Schweingruber and E. Schär. (1996) Resistograph and X-ray density charts of wood comparative evaluation of drill resistance profiles and x-ray density charts of different wood species. Holzforschung. 50: 303-311. Roig, F. A., J. J. J. Osornio, J. V. Diaz, B. Luckman, H. Tiessen, A. Medina and E. J. Voellemeyer (2005) Anatomy of growth rings at the Yucatán Peninsula. Dendrochronologia. 22: 187-193. Sass, U., D. Eckstein and W. Killmann (1995) Periodicity of growth in a Malaysian dipterocarp. Proc. Workshop on dendrochronology in Asia and the Pacific region, 4-9 March 1995, Tsukuba, Japan. Sass, U., W. Killmann and D. Eckstein (1995) Wood formation in two species of dipterocarpaceae in Peninsular Malaysia. International Association of Wood Anatomists. 16(4): 371-384. Tavares, F., J. Louzada and H. Pereira (2014) Variation in wood density and ring width in Acacia melanoxylon at four sites in Portugal. European Journal of Forest Research. 133: 31-39. Worbes, M. (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. Journal of Ecology. 87: 391-403.
摘要: 
本研究以創傷開窗法在不同時期標記九年生之印度紫檀(Pterocarpus indicus)、大葉楠(Machilus kusanoi)、樟樹(Cinnamomum camphora)、烏心石(Michelia compressa var. compressa)、台灣櫸(Zelkova serrata)、光臘樹(Fraxinus formosana)、杜英(Elaeocarpus decipiens)、陰香(Cinnamomum burmannii)、茄苳(Bischofia javanica)、楓香(Liquidambar formosana)等十種闊葉樹,探討生長輪內各時期之生長量與相對應樹輪密度趨勢,並觀察其顯微與生長特徵進行驗證,以達成樹齡分析上之應用。分析時將一年區分為四個階段,分別為2010年9月到11月(P1)、 2010年12月到2011年1月(P2)、2011年2月到4月(P3)、2011年5月到8月(P4)。結果顯示國內此十種闊葉樹每年皆僅有一次生長季,可將生長輪直接視為年輪;印度紫檀、烏心石、光臘樹、杜英之端生薄壁細胞帶生成於P1時期,茄苳之木纖維帶生成於P2時期,而大葉楠之端生薄壁細胞帶、樟樹與楓香之木纖維帶及台灣櫸之春材導管帶生成於P3時期,陰香之端生薄壁細胞帶則於P4時期生成,除樟樹是以P1時期之密度最低外,其餘樹種之密度變化皆以生長輪特徵帶(春材導管、木纖維及端生薄壁細胞)生成之時期最低,此可做為判斷年輪(樹齡)之依據之一,然而樟樹之木纖維特徵較不明顯,因此可以不同樹種在不同時期之每日徑向生長量配合密度檢測來進行樹齡判斷;依相關性分析可知,氣候因子對印度紫檀、樟樹、台灣櫸與光臘樹徑向生長量具顯著影響,對其餘試驗樹種生長量之影響不顯著。
URI: http://hdl.handle.net/11455/89273
其他識別: U0005-2108201501045500
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-26起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101033028-1.pdf5.64 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.