Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89275
DC FieldValueLanguage
dc.contributor廖天賜zh_TW
dc.contributor.authorYu Cheng Tsaien_US
dc.contributor.author蔡育宸zh_TW
dc.contributor.other森林學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-07T07:04:41Z-
dc.identifierU0005-2701201501000300zh_TW
dc.identifier.citation王昭月、曾夢蛟 (2010) 利用葉綠素螢光與有效授粉估測甜椒之耐熱性。台灣農業研究 59 (4): 237-248。 王經文、廖天賜、陳忠義、楊凱愉、林睿思、陳宜敏、許立勳 (2008) 木賊葉木麻黃苗木對水分逆境之反應。林業研究季刊 30 (2): 31-43。 王曉江、賀康寧、唐道峰 (2010) 庫布齊沙漠幾種旱生灌木耗水特性研究。乾旱區資源與環境。 24 (10): 116-121。 何坤益、程俊堯、蔡維哲、陳柏誠、李明仁 (2011) 應用指標評估法探討嘉義南靖糖廠平地造林林分適應性。嘉大農林學報 8 (1): 93-105。 吳聲沅 (2008) 利用樹液探針研究環境參數對植物蒸散之影響。國立中央大學碩士論文。1-7頁。 林映儒、鄭智馨、曾聰堯 (2011) 台灣平地造林之碳吸存潛能:以長期果園廢耕地與造林地為例。中華林學季刊 44 (4): 567-588。 林國銓、杜清澤、黃菊美 (2010) 光蠟樹人工林碳貯存量和吸存量之估算。中華林學季刊 43 (2): 261-276。 邱志明、鍾智昕 (2013) 農平地造林經營活化策略之探討。林業研究專訊 20 (6): 19-25。 邱志明、鍾智昕、林謙佑、唐盛林、林振榮 (2010) 重要平地造林樹種林木生長特性之研究。林業研究專訊 17 (6): 10-16。 邱清安、王志強、呂金誠、林博雄、曾喜育 (2008) 臺灣半乾旱區域與潛在疏林植群之探討。台灣林業科學 23 (S): S23-36。 姚銘輝、陳守泓、陳述 (2006) 氣象資源於水稻利用效率之探討 II 水分利用效率。台灣農業研究 55 (2): 121-134。 柯勇 (2004) 植物生理學。藝軒文化事業有限公司。668-676頁。 洪儷文、王亞男 (2003) 樟樹不同冠層位置之光合作用淨生產力。中華林學季刊 36 (1): 27-38。 徐邦達 (2002) 葉綠素螢光和PAM螢光儀:原理及測量。光合作用研討會。1-9頁。 翁韶良、陳忠偉、方懷聖、黃士元、翁仁憲 (2011) 在不同溫度與光度下桃實百日青之淨光合作用速率與葉綠素螢光特性。台灣生物多樣性研究 13 (1): 71-83。 馬履一、王瑞輝、徐軍亮、奚如春、王華田 (2009) 北京市主要園林綠化植物耗水性及節水灌溉制度研究。中國林業出版社。 張明聰、陳清義 (1991) 土壤水分條件影響芒果生理特性之研究。中國園藝 37 (2): 100-113。 張哲嘉、林宗賢 (1995) 桶柑葉片光合作用特徵之研究。中國園藝 41 (3): 161-173。 許博行、張安瑮 (2001) 二氧化碳濃度與溫度對樟樹苗木生長及光合作用之影響。台灣林業科學 16 (1): 11-23。 郭瑞萍、莫興國 (2007) 森林、草地和農田典型植被蒸散量的差異。應用生態學報 18 (8): 1751-1757。 郭耀綸、范開翔、黃慈薇、李彥屏、吳惠綸、蔡瑞芬 (2004) 台灣三十種闊葉樹陽葉氣體交換潛力之研究。台灣林業科學 19 (4): 375-386。 陳青香、林登秋、黃正良 (2007) 台灣中部蓮華池試驗林天然闊葉林與人工杉木林葉面積指數變動及其對初級生產力估算之影響。台灣林業科學 22 (4): 423-439。 陳述、姚銘輝、陳守泓 (2008) 利用潛熱通量資料驗證水稻田蒸發散模式。作物、環境與生物資訊 5 (1): 29-39。 陳朝圳、吳守從、江彥鋒 (2006) 應用MODIS衛星影像推估台灣地區之蒸發散量。臺灣林業科學 21 (2): 249-261。 廖天賜、陳宜敏、王經文 (2009) 台灣兩種原生樹種對水分逆境之形態和生理之反應。林業叢刊 197: 143-152。 廖宜緯、陳美光、陳羽康、鍾玉龍、吳守從 (2011) 從台糖公司屏東縣平地造林碳貯存量調查。中華林學季刊 44 (3): 373-384。 鄭祈全、 邱祈榮、陳燕章 (1997) 應用遙測方法估測台灣杉林分之葉面積指數。台灣林業科學 12 (3): 309-317。 Aphalo, P. J. and P. G. Jarvis (1991) Do stomata respond to relative humidity? Plant, Cell & Environment 14: 127-132. Bernacchi, C. J., E. L. Singsaas, C. Pimentel, A. R. Portis Jr. and S. P. Long (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis 24 (2): 253-259. Breda, N., H. Cochard, E. Dreyer and A. Granier (1993) Water transfer in a mature oak stand (Quercus petraea): seasonal evolution and effects of a severe drought. Canadian Journal of Forest Research 23 (6): 1136-1143. Brestic, M. and M. Zivcak (2013) PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. Molecular Stress Physiology of Plants p. 87-131. Brueck, H (2008) Effects of nitrogen supply on water-use efficiency of higher plants. Journal of Plant Nutrition and Soil Science 171 (2): 210-219. Chen, J. W., Q. Zhang, X. S. Li and K. F. Cao (2009) Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology. Planta 230: 459-468. Crafts-Brandner, S. J. and M. E. Salvucci (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences 97 (24): 13430-13435. Davies, W. J. and J. Zhang (1991) Root signals and the regulation of growth and development of plant in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology 42: 55-76. Demmig-Adams, B., W. W. Adams III, D. H. Barker, B. A. Logan, D. R. Bowlong and A. S. Verhoeven (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum 98: 253-264. Diaz-Lopeza, L., V. Gimenob, I. Simonc, V. Martinezb, W. M. Rodriguez-Ortegab and F. Garcia-Sanchez (2012) Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agricultural Water Management 105: 48-56. Dombroski, J. L. D., S. C. Praxedes, R. M. O. de Freitas and F .M. Pontes (2011) Water relations of Caatinga trees in the dry season. South African Journal of Botany 77: 430-434. Dreyer, E., X. L. Roux, P. Montpied, F. A. Daudet and F. Masson (2001) Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiology 21: 223-232. Duursma, R. A., P. Payton, M. P. Bange, K .J. Broughton, R. A. Smith, B. E. Medlyn and D. T. Tissue (2013) Near-optimal response of instantaneous transpiration efficiency to vapour pressure deficit, temperature and [CO2 ] in cotton (Gossypium hirsutum L.). Agricultural and Forest Meteorology 168: 168-176. Flexas, J., J. M. Escalona and H. Medrano (1999) Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant, Cell & Environment 22: 39-48. Flexas, J., M. Ribas-Carbo, A. Diaz-Espejo, J. Galmes and H. Medrano (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant, Cell & Environment 31: 602-621. Frazer, G. W., J. A. Trofymow and K. P. Lertzman (2001) Canopy openness and leaf area in chronosequences of coastal temperate rainforests. Canadian Journal of Forest 30: 239-256. Galle, A., P. Haldimann and U. Feller (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist 174 (4): 799-810. Gebrekirstos, A., D. Teketay., M. Fetene and R. Mitlohner (2006) Adaptation of five co-occurring tree and shrub species to water stress and its implication in restoration of degraded lands. Forest Ecology and Management 299: 259-267. Grace, J. (1974) Effect of wind on grasses 1. Cuticular and Stomatal Transpiration. Journal of Experimental Botany 25(3): 542-551. Herrera, A., R. Urich, E. Rengifo, C. Ballestrini, A. Gonzalez and W. Leon (2012) Transpiration in a eucalypt plantation and a savanna in Venezuela. Trees - Structure and Function 26: 1759-1769. Huo., Z. L., X. Q. Dai, S. Y. Feng, S. Z. Kang, G. H. Huang (2013) Effect of climate change on reference evapotranspiration and aridity index in arid region of China. Journal of Hydrology 492: 24-34. Kanety, T., A. Naor, A. Gips, U. Dicken, J. H. Lemcoff and S. Cohen (2014) Irrigation influences on growth, yield, and water use of persimmon trees. Irrigation Science 32: 1-13. Kitao, M., T. T. Lei, T. Koike, T. Koike, H. Tobita and Y. Maruyama (2006) Tradeoff between shade adaptation and mitigation of photoinhibition in leaves of Quercus mongolica and Acer mono acclimated to deep shade. Tree Physiology 26: 441-448. Kramer, P. J. and J. S. Boyer (1995) Water relations of plants and soils. San Diego, C. A., USA: Academic Press. p. 201-282, 313-342. Lepedus, H., I. Brkic, V. Cesar, V. Jurkovic, J. Antunovic, A. Jambrovic, J. Brkic and D. Simic (2012) Chlorophyll fluorescence analysis of photosynthetic performance in seven maize inbred lines under water-limited conditions. Periodicum Biologorum 114: 73-76. Leuschner, C., K. Backes, D. Hertel, F. Schipka, U. Schmitt, O. Terborg and M. Runge (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. Forest Ecology and Management 149: 33-46. Maxwell, K. and G. M. Johnson (2000) Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51: 659-668. Medrano, H., J. M. Escalona, J. Bota, J. Gulias and J. Flexas (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany 89: 895-905. Moreno, G. and E. Cubera (2008) Impact of stand density on water status and leaf gas exchange in Quercus ilex. Forest Ecology and Management 254: 74-84. Peters, J., A. M. Gonzalez-Rodriguez, M. S. Jimenez, D. Morales and G. Wieser (2008) Influence of canopy position, needle age and season on the foliar gas exchange of Pinus canariensis. European Journal of Forest Research 127: 293-299. Philip, J. R. (1966) Plant water relations: some physical aspects. Annual Review of Plant Physiology 17: 245-268. Quentin, A. G., A. P. O'Grady, C. L. Beadle, C. Mohammed and E.A. Pinkard (2012) Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill. Tree Physiology 32 (8): 958-967. Renninger, H. J., N. Carlo, K. L. Clark and K. V. R. Schafer (2014) Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Tree Physiology 34: 159-173. Saito, T., T. Tanaka, H. Tanabe, Y. Matsumoto and Y. Morikawa (2003) Variations in transpiration rate and leaf cell turgor maintenance in saplings of deciduous broad-leaved tree species common in cool temperate forests in Japan. Tree Physiology 23: 59-66. Sobrado, M. A. (2000) Relation of water transport to leaf gas exchange properties in three mangrove species. Trees - Structure and Function. 14: 258-262. Sperry, J. S., J. R. Donnelly and M. T. Tyree (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment 11 (1): 35-40. Steduto, P. and R. Albrizio (2005) Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea: II. Water use efficiency and comparison with radiation use efficiency. Agricultural and Forest Meteorology 130: 269-281. Teitel, M., M. Atias, A. Schwartz and S. Cohen (2011) Use of a greenhouse as an open chamber for canopy gas exchange measurements: Methodology and validation. Agricultural and Forest Meteorology 151: 1346-1355. Walter, H. (1994) Vegetation of the earth: the ecological systems of the geo-biosphere. 3rd ed. Springer-Verlag. p. 318. Varone, L., M. Ribas-Carbo, C. Cardona, A. Galle, H. Medrano, L. Gratani and J. Flexas (2012) Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: Different response to water stress. Environmental and Experimental Botany. 75: 235-247. Vassileva, V., K. Demirevska, L. Simova-Stoilova, T. Petrova, N. Tsenov and U. Feller (2012) Long-term field drought affects leaf protein pattern and chloroplast ultrastructure of winter wheat in a cultivar-specific manner. Journal of Agronomy and Crop Science 198: 104-117. Yin, C. Y., Y. H. Peng, R. G. Zang, Y. P. Zhu and C. Y. Li (2005) Adaptive responses of Populus kangdingensis to drought stress. Physiologia Plantarun 123: 445-451. Yin, C. Y., F. Berninger and C. Y. Li (2006) Photosynthetic responses of Populus przewalski subjected to drought stress. Photosynthetica 44 (1): 62-68. Yordanov, I., V. Velikova and T. Tsonev (2003) Plant responses to drought and stress tolerance. Bulgarian Journal of Plant Physiology 29: 187-206.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/89275-
dc.description.abstract植物如何調適生理行為以對應缺水逆境,向來為生態生理學者研究探討的重點。台灣西部夏雨冬乾,冬季降雨量不足造成乾旱逆境,不利於植物生長。本研究以現地調查不同季節的生理日變化,探討雲林地區常見平地造樹種無患子 (Sapindus mukorossii)、光蠟樹 (Fraxinus formosana)、青剛櫟 (Cyclobalanopsis glauca)、茄苳 (Bischofia javanica) 及白千層 (Melaleuca leucadendra) 等五種樹種之水分生理特性,以探討各樹種乾溼季之調適能力。 結果顯示乾季缺水時,各樹種之淨光合作用速率、氣孔導度及蒸散速率、葉片水勢多有所下降,此時水分利用效率亦有所提升,並發現無患子與茄苳分別於1、3月出現落葉現象。而乾季之2013年12月因土壤含水量較高,除無患子正處落葉期外,其餘樹種之光合與蒸散能力多較乾季之2013年1、3月高。青剛櫟及白千層於2013年1月之淨光合作用速率測值與溼季相近,顯示對缺水逆境有較佳之適應能力。光蠟樹修枝後發現氣體交換能力有所提升,顯示對非自然落葉衝擊具良好之反應調節能力。蒸散量季節變化顯示葉面積指數較高之樹種,林分蒸散量亦相對較高。螢光參數Fv / Fm則顯示各樹種並未有溼季高於乾季之趨勢,乾季之淨光合作用速率下降原因應為氣孔限制與低溫導致酵素活性下降所致。 綜合結果顯示,雲林平原地區冬乾之缺水引發之氣體交換效能低弱,並未造成各樹種不可逆傷害。即各樹種可藉由氣孔、落葉調控或深根吸水,以適應西部平原夏雨冬乾的氣候環境。zh_TW
dc.description.abstractHow plnats responding to drought stress has long been discussed by ecophysiologist. The weather pattern in western Taiwan is rainy in summer and dry in winter, which is also an inhibition of plants growth in winter. To identify the physiological state between dry and wet season of Sapindus mukorossii, Fraxinus formosana, Cyclobalanopsis glauca, Bischofia javanica and Melaleuca leucadendra in plain of Yunlin area, we measured the response of trees physiology in different season. The result show that the net photosynthesis rate, stomatal conductance, transpiration rate, leaf water potential obtained in dry season almost reduced with the improvement of water use efficiency and also found there was the defoliation period on Sapindus mukorossii and Bischofia javanica in January and March. Because of the higher precipitation comparing to January and March 2013, except for Sapindus mukorossii which was under defoliation period, the other tree species showed higher photosynthesis and transpiration rate in January 2014. Cyclobalanopsis glauca and Melaleuca leucadendra showed high net photosynthesis rate in January 2013 express a better capacity of environment adaptation to drought. It was found that the photosynthesis rate improvement of Fraxinus formosana after pruning, which suggested a well responses to compensate for the impacts of defoliation. The trees species with high leaf area index also showed high transpiration. In chlorophyll fluorescence we observed, Fv / Fm were not totally lower in dry seanson and higher in rainy season. The degradation of gas exchange in dry season would cause by stomatal limitation and lower temperature-induced activity decreased of enzyme. To synthesize above result, the degradation of gas exchange in dry season of plain area of Yunlin didn't induce irreversible injury. The tree species we observed could adapt dry season in western Taiwan by stomatal adjustment, defoliation or by deep root.en_US
dc.description.tableofcontents中文摘要………………………………………………I 英文摘要………………………………………………II 文目錄………………………………………………IV 圖目錄………………………………………………VII 表目錄………………………………………………IX 一、前言………………………………………………1 二、前人研究………………………………………………3 (一) 台灣平地造林………………………………………………3 1. 台灣平地造林研究………………………………………………3 (二) 水分對植物之重要性………………………………………………4 1. 水分對植物生理之影響………………………………………………5 2. 植物蒸散相關之評估………………………………………………6 3. 蒸散速率與氣孔之關係………………………………………………8 4. 蒸散率速與環境因子之關係………………………………………………8 (三) 葉綠素螢光應用於植物生長檢測………………………………………………10 三、材料與方法………………………………………………11 (一)試驗地概況………………………………………………11 1. 雲林縣古坑樣區………………………………………………11 2. 雲林縣虎尾樣區………………………………………………11 (二) 材料與試驗項目………………………………………………15 1. 植物材料………………………………………………15 2. 不同時節之氣體交換日變化測定………………………………………………15 3. 不同時節之葉綠素螢光………………………………………………16 4. 葉片水勢日變化………………………………………………16 5. 土壤體積含水率………………………………………………17 6. 試驗日光量、溫溼度記錄………………………………………………17 7. 葉面積指數計算………………………………………………17 8. 蒸散量計算………………………………………………18 四、結果………………………………………………19 (一) 氣象資料………………………………………………19 (二) 不同季節土壤含水率之變化………………………………………………23 (三) 各樹種乾季及溼季葉面積指數………………………………………………23 1. 無患子小葉面積測定………………………………………………23 2. 各樹種葉面積指數………………………………………………23 (四) 不同季節葉片水分潛勢變化………………………………………………26 1. 古坑樣區………………………………………………26 2. 虎尾樣區………………………………………………26 (五) 不同季節各樹種葉部氣體交換之日變化表現………………………………………………29 1. 2013年1月至2014年1月………………………………………………29 2. 古坑樣區無患子、光蠟樹2013年與2014年二年之1、3月比較………………………………………………41 (六) 不同季節各樹種日水分利用效率平均表現………………………………………………45 (七) 不同季節各樹種葉綠素螢光參數變化………………………………………………47 1. 最大光化學潛勢 (Fv / Fm)………………………………………………47 2. 3種淨光合作用速率下光照下光化學潛能之日變化………………………………………………47 (八) 各樹種之蒸散量推算………………………………………………58 五、討論………………………………………………60 (一) 各樹種葉片水分潛勢日變化………………………………………………60 (二) 各樹種葉面積指數變化………………………………………………61 (三) 不同季節各樹種葉部氣體交換之日變化表現………………………………………………62 (四) 不同季節各樹種水分利用效率………………………………………………66 (五) 不同季節各樹種葉綠素螢光參數變化………………………………………………68 (六) 各樹種日蒸散量推算………………………………………………69 六、結論………………………………………………71 七、引用文獻………………………………………………73zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2015-01-30起公開。zh_TW
dc.subject無患子zh_TW
dc.subject光蠟樹zh_TW
dc.subject青剛櫟zh_TW
dc.subject茄苳zh_TW
dc.subject白千層zh_TW
dc.subject光合作用zh_TW
dc.subject蒸散量zh_TW
dc.subjectSapindus mukorossiien_US
dc.subjectFraxinus formosanaen_US
dc.subjectCyclobalanopsis glaucaen_US
dc.subjectBischofia javanicaen_US
dc.subjectMelaleuca leucadendraen_US
dc.subjectphotosynthesisen_US
dc.subjecttranspirationen_US
dc.titleStudy on Hydraulic Physiology of Five Afforestation Species in Drought - Wet Season in Central Taiwanen_US
dc.title台灣中部五種平地造林樹種乾溼季水分生理之研究zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2015-01-30zh_TW
dc.date.openaccess2015-01-30-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:森林學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101033014-1.pdf2.11 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.