Please use this identifier to cite or link to this item:
標題: Yatein, Antitumor Active Compound from Calocedrus formosana Florin Leave and Its Mechanism
作者: Shang-Tse Ho
關鍵字: 台灣肖楠;肺癌;(-)-反式-3-(3,4-亞甲基二氧基芐基)-2-(3,4,5-三甲氧基芐基)丁內酯;細胞週期停滯;異體移殖;Calocedrus formosana Florn;lung cancer;yatein;cell cycle arrest;xenograft
引用: 王升陽、徐麗芬、楊寧蓀(2003)藥用及保健植物新發展。科學發展。364:50–55。 郭寶章(1995)台灣貴重針葉五木。中華林學叢書956號。pp. 423–447。 陳志輝(2002)珍貴稀有之裸子植物–台灣肖楠。行政院農委會特有生物研究保育中心保育專題。 陳盈如(2006)應用固相微萃取技術於土肉桂及台灣肖楠葉揮發成分之分析。國立台灣大學森林環境暨資源學研究所碩士論文。pp. 8–9。 應紹舜(1999)台灣高等植物彩色圖誌。第一卷。台北。pp. 132–144。 顏佩翎(2008)台灣肖楠心材抗氧化成分之研究。國立台灣大學森林環境暨資源學研究所碩士論文。pp. 6–7。 譚健民(2009)粒線體與細胞凋亡。生物醫學。2:250–268。 Arora, S., S. Singh, G. A. Piazza, C. M. Contreras, J. Panyam and A. P. Singh (2012) Honokiol: a novel natural agent for cancer prevention and therapy. Curr. Mol. Med. 12:1244–1252. Augustine, M. K., M. D. Choi, S. W. Ryter and B. Levine (2013) Autophagy in human health and disease. N. Engl. J. Med. 368:651–662. Avisetti, D. R., K. S. Babu and S. V. Kalivendi (2014) Activation of p38/JNK pathway is responsible for embelin induced apoptosis in lung cancer cells: transitional role of reactive oxygen species. PLoS One 22:e87050. Bakkenist, C. J. and M. B. Kastan (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506. Bearz, A., M. Berretta, A. Lleshi and U. Tirelli (2011) Target therapies in lung cancer. J. Biomed. Biotechnol. 2011:921231. Broker, L. E., F. A. Kruyt and G. Giaccone (2005) Cell death independent of caspases: a review. Clin. Cancer Res. 11:3155–3162. Budihardjo, I., H. Oliver, M. Lutter, X. Luo and X. Wang (1999) Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15: 269–290. Castedo, M., J. L. Perfettini, T. Roumier and G. Kroemer (2002) Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ. 9:1287–1293. Chang, H.-T., Y.-H. Cheng, C.-L. Wu, S.-T. Chang, T.-T. Chang and Y.-C. Su (2008) Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresour. Technol. 99:6266–6270. Chao, K.-P., K.-F. Hua, H.-Y. Hsu, Y.-C. Su and S.-T. Chang (2005) Anti-inflammatory activity of sugiol, a diterpene isolated from Calocedrus formosana bark. Planta Med. 71:300–305. Chen, C.-H., J.-P. Huang, C.-C. Tsai and S.-M. Chaw (2009) Phylogeny of Calocedrus (Cupressaceae), an eastern Asian and western North American disjunct gymnosperm genus, inferred from nuclear ribosomal nrITS sequences. Bot. Stud. 50: 425–433. Chen, H. M., M. J. Lee, C. Y. Kuo, P. L. Tsai, J. Y. Liu and S. H. Kao (2011) Ocimum gratissimum aqueous extract induces apoptotic signalling in lung adenocarcinoma cell A549. Evid. Based Complement. Alternat. Med. 2011:739093. Chen, T.-H., Y.-H. Huang, J.-J. Lin, B.-C. Liau, S.-Y. Wang, Y. -C. Wu and T. -T. Jong (2010) Cytotoxic Lignan Esters from Cinnamomum osmophloeum. Planta Med. 76: 613–619. Chen, Y.-L., S.-Z. Lin, J.-Y. Chang, Y.-L. Cheng, N.-M. Tsai, S-P. Chen, W.-L. Chang and H.-J. Harn (2006) In vitro and in vivo studies of a novel potential anticancer agent of isochaihulactone on human lung cancer A549 cells. Biochem. Pharmacol. 72:308–319. Cheng, S.-S., C.-L.Wu, H.-T. Chang, Y.-T. Kao and S.-T. Chang (2004) Antitermitic and antifungal activities of essential oil of Calocedrus formosana leaf and its composition. J. Chem. Ecol. 30:1957–1967. Cheng, S.-S., H.-T. Chang, S.-T. Chang, K.-H. Tsai and W.-H. Chen (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour. Technol. 89:99–102. Cheng, Y.-S., T.-B. Lo, L.-H. Chang and Y.-T. Lin (1961) Study of the extractive constituents from the wood of Libocedrus formosana, Florin. IV. Partial hydrogenation of thujic acid. J. Chin. Chem. Soc. 8:103–108. Chiang, Y.-M., H.-K. Liu, J.-M. Lo, S.-C. Chien, Y.-F. Chan, T.-H. Lee, J.-K. Su and Y.-H. Kuo (2003) Cytotoxic constituents of the leaves of Calocedrus formosana. J. Chin. Chem. Soc. 50:161–166. Chien, S.-C., H.-K. Liu and Y.-H. Kuo (2004) Two new compounds from the leaves of Calocedrus microlepic var. formosana. Chem. Pharm. Bull. 52:762–763. Choi, E. J. and G. H. Kim (2008) Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine 15:683–690. Choudhari, A. S., S. A. Suryavanshi and R. Kaul-Ghanekar (2013) The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 Positive) and apoptosis in HeLa (HPV-18 positive). PLoS One 26:e70127. Cohen, S. (1965) The stimulation of epidermal proliferation by a specific protein (EGF). Dev. Biol. 12:394–407. Cooke, M. S., M. D. Evans, M. Dizdaroglu and J. Lunec (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17:1195–1214. Cotugno, R., R. Fortunato, A. Santoro, D. Gallotta, A. Braca, N. De Tommasi and M. A. Belisario (2012) Effect of sesquiterpene lactone coronopilin on leukaemia cell population growth, cell type-specific induction of apoptosis and mitotic catastrophe. Cell Prolif. 45:53–65. Davis, R. A., E. C. Barnes, J. Longden, V. M. Avery and P. C. Healy (2009) Isolation, structure elucidation and cytotoxic evaluation of endiandrin B from the Australian rainforest plant Endiandra anthropophagorum. Bioorg. Med. Chem. 17:1387–1392. Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:495–516. Fang, J.-M., S.-T. Jan and Y.-S. Cheng (1985) (+)-Calocedrin, a lignan dihydroanhydride from Calocedrus formosana. Phytochemistry 24:1863–1864. Fang, J.-M., S.-T. Jan and Y.-S. Cheng (1987) Terpenoids from Calocedrus formosana. Phytochemistry 26:853–854. Fang, J.-M., S.-T. Jan and Y.-S. Cheng (1989a) Lignans from leaves of Calocedrus formosana. Phytochemistry 28:3553–3555. Fang, J.-M., S.-T. Jan and Y.-S. Cheng (1989b) Terpenoids from leaves of Calocedrus formosana. Phytochemistry 28:1173–1175. Fang, J.-M., S.-T. Jan and Y.-S. Cheng (1990) Lignans from wood of Calocedrus formosana. Phytochemistry 29:3048–3049. Ferrara, N. and R. S. Kerbel (2005) Angiogenesis as a therapeutic target. Nature 438: 967–974. Ferrara, N., H. P. Gerber and J. LeCouter (2003) The biology of VEGF and its receptors. Nat. Med. 9:669–676. Fiandalo, M. V. and N. Kyprianou (2012) Caspase control: protagonists of cancer cell apoptosis. Exp. Oncol. 34:165–75. Galluzzi, L. and G. Kroemer (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135:1161–1163. Ghate, N. B., D. Chaudhuri, R. Sarkar, A. L. Sajem, S. Panja, J. Rout and N. Mandal (2013) An antioxidant extract of tropical lichen, Parmotrema reticulatum, induces cell cycle arrest and apoptosis in breast carcinoma cell line MCF-7. PLoS One 8:e82293. Guo, J., G. Wu, J. Bao, W. Hao, J. Lu and X. Chen (2014) Cucurbitacin B induced ATM-mediated DNA damage causes G2/M cell cycle arrest in a ROS-dependent manner. PLoS One 9:e88140. Hasima, N., L. I. Aun, M. N. Azmi, A. N. Aziz, E. Thirthagiri, H. Ibrahim and K. Awang (2010) 1'S-1'-acetoxyeugenol acetate: a new chemotherapeutic natural compound against MCF-7 human breast cancer cells. Phytomedicine 17:935–939. Hayflick, L. and P. S. Moorhead (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25:585–621. Herbst, R. S., J. V. Heymach and S. M. Lippman (2008) Lung cancer. New Engl. J. Med. 359:1367–1380. Ho, C.-L., Y.-H. Teng, I.-C. Wang, P.-C. Liao and Y.-C. Su (2011) Composition, antioxidant and antimicrobial activities of the seed essential oil of Calocedrus formosana from Taiwan. Nat. Prod. Comm. 6:133–136. Ho, S.-T., Y.-T. Tung, Y.-L. Chen, Y.-Y. Zhao, M.-J. Chung and J.-H. Wu (2012) Antioxidant activities and phytochemical study of leaf extracts from 18 indigenous tree species in Taiwan. Evid. based Complement. Altern. Med. 2012:215959. Hsieh, C.-L., L.-L. Shiu, M.-H. Tseng, Y.-Y. Shao and Y.-H. Kuo (2006a) Calocedimers A, B, C, and D from the bark of Calocedrus macrolepis var. formosana. J. Nat. Prod. 69:665–667. Hsieh, C.-L., M.-H. Tseng and Y.-H. Kuo (2005) Formosadimers A, B, and C from the bark of Calocedrus macrolepis var. formosana. Chem. Pharm. Bull. 53:1463–1465. Hsieh, C.-L., M.-H. Tseng, Y.-Y. Shao, J.-Y. Chang, C.-C. Kuo, C.-Y. Chang and Y.-H. Kuo (2006b) C35 terpenoids from the bark of Calocedrus macrolepis var. formosana with activity against human cancer cell lines. J. Nat. Prod. 69:1611–1613. Hsu, H.-F., K.-H. Huang, K.-J. Lu, S.-J. Chiou, J.-H. Yen, C.-C. Chang and J.-Y. Houng (2011) Typhonium blumei extract inhibits proliferation of human lung adenocarcinoma A549 cells via induction of cell cycle arrest and apoptosis. J. Ethnopharmacol. 135:492–500. Ichikawa, N. (1932) Studies on the volatile acid of Libocedrus macrolepis, Benth et Hook. Part I. J. Chem. Soci. Jap. 53:353–365. Ichikawa, N. (1934) Studies on the acid contained in the wood of Libocedrus macrolepis, Florin. II. J. Chem. Soci. Jap. 55:85–94. Ikeda, R., T. Nagao, H. Okabe, Y. Nakano, H. Matsunaga, M. Katano and M. Mori (1998) Antiproliferative constituents in umbelliferae plants. III. Constituents in the root and the ground part of Anthriscus sylvestris Hoffm. Chem. Pharm. Bull. 46:871–874. Jain, M. V., A. M. Paczulla, T. Klonisch , F. N. Dimgba, S. B. Rao, K. Roberg, F. Schweizer, C. Lengerke, P. Davoodpour, V. R. Palicharla, S. Maddika and M. Łos (2013) Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J. Cell. Mol. 17:12–29. Jiang, M., Q. Wei, N. Pabla, G. Dong, C. Y. Wang, T. Yang, S. B. Smith and Z. Dong (2007) Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem. Pharmacol. 73:1499–1510. Jordan, M. A. and L. Wilson (2004) Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4:253–265. Kamijo, T., S. Bodner, E. van de Kamp, D. H. Randle and C. J. Sherr (1999) Tumor spectrum in ARF-deficient mice. Cancer Res. 59:2217–2222. Karimi, M., F. Conserva, S. Mahmoudi, J. Bergman, K. G. Wiman and V. J. Bykov (2010) Extract from Asteraceae Brachylaena ramiflora induces apoptosis preferentially in mutant p53-expressing human tumor cells. Carcinogenesis 31:1045–1053. Khan, N., N. Hadi, F. Afaq, D. N. Syed, M. H. Kweon and H. Mukhtar (2007) Pomegranate fruit extract inhibits prosurvival pathways in human A549 lung carcinoma cells and tumor growth in athymic nude mice. Carcinogenesis 28:163–173. Krimpenfort, P., K. C. Quon, W. J. Mooi, A. Loonstra and A. Berns (2001) Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413:83–86. Kuo, Y.-H., B.-H. Chang and Y.-T. Lin (1975) Studies on the extractive constituents of the bark of Libocedrus formosana Florin. I. The structure of 6α-hydroxy-7-oxo-ferruginol. J. Chin. Chem. Soc. 22:49–52. Lee, S.-H, I. B. Jaganath, S.-M. Wang and S. D. Sekaran (2011) Antimetastatic effects of Phyllanthus on human lung (A549) and breast (MCF-7) cancer cell lines. PLoS One 6:e20994. Lin, K.-W., A.-M. Huang, C.-C. Lin, C.-C.Chang, W.-C. Hsu, T.-C. Hour, Y.-S. Pu and C.-N. Lin (2014) Anti-cancer effects of ursane triterpenoid as a single agent and in combination with cisplatin in bladder cancer. Eur. J. Pharmacol. 740:742–751. Lin, Y.-T. and K.-T. Liu (1963) Study of the extractive constituents from the wood of Libocedrus Formosana, Florin. VI. thin-layer chromatography of tropolones. J. Chin. Chem. Soc. 10:156–162. Lin, Y.-T. and K.-T. Liu (1965) A study of the extractive constiuents from the wood of Libocedrus formosana, Florin. VIII the phenolic pomponents. shonanol, a new diterpene phenol. J. Chin. Chem. Soc. 12:51–60. Lin, Y.-T., T.-B. Lo and Y.-S. Cheng (1960) Study of the extractive constituents from the wood of Libocedrus formosana, Florin III. isolation of chaminic acid, acid C and acid E. J. Chin. Chem. Soc. 7:166–173. Lin, Y.-T., Y.-H. Kuo and B.-H. Chang (1975) Studies on the extractive constituents of the bark of Libocedrus formosana Florin. II . J. Chin. Chem. Soc. 22:331–334. Liu, Z., B. Zhang, K. Liu, Z. Ding and X. Hu (2012) Schisandrin B attenuates cancer invasion and metastasis via inhibiting epithelial-mesenchymal transition. PLoS One 7:e40480. Lo, T.-B. and Y.-T. Lin (1956) Study on the extractive constituents from the wood of Libocedrus formosana, Florin. I. J. Chin. Chem. Soc. 3:30–35. Lu, Y., J. Chen, M. Xiao, W. Li and D. D. Miller (2012) An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 29:2943–2971. MacFarlane, M. and A. C. Williams (2004) Apoptosis and disease: a life or death decision. EMBO Rep. 5:674–678. Martinez-Ruiz, G., V. Maldonado, G. Ceballos-Cancino, J. P. Grajeda and J. Melendez-Zajgla (2008) Role of Smac/DIABLO in cancer progression. J. Exp. Clin. Cancer Res. 27:48–54. McCann, S. E., L. U. Thompson, J. Nie, J. Dorn, M. Trevisan, P. G. Shields, C. B. Ambrosone, S. B. Edge, H. F. Li, C. Kasprzak and J. L. Freudenheim (2010) Dietary lignan intakes in relation to survival among women with breast cancer: the western new york exposures and breast cancer (WEB) study. Breast Cancer Res. Treat. 122:229–235. Min, H.-Y., E.-J. Park, J.-Y. Hong, Y.-J. Kang, S.-J. Kim, H.-J. Chung, E.-R. Woo, T.-M. Hung, U.-J. Youn, Y.-S. Kim, S.-S. Kang, K. Bae and S.-K. Lee (2008) Antiproliferative effects of dibenzocyclooctadiene lignans isolated from Schisandra chinensis in human cancer cells. Bioorg. Med. Chem. Lett. 18:523–526. Moon, S. S., A. A. Rahman, J. Y. Kim and S. H. Kee (2008) Hanultarin, a cytotoxic lignan as an inhibitor of actin cytoskeleton polymerization from the seeds of Trichosanthes kirilowii. Bioorg. Med. Chem. 16:7264–7269. O'Boyle, N. M., M. Carr, L. M. Greene, N. O. Keely, A. J. S. Knox, T. McCabe, D. G. Lloyd, D. M. Zisterer and M. J. Meegan (2011) Synthesis, biochemical and molecular modelling studies of antiproliferative azetidinones causing microtubule disruption and mitotic catastrophe. Eur. J. Med. Chem. 46:4595–4607. Okada, H. and T. W. Mak (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 4:592–603. Ou, J. P., H. Y. Lin, K. Y. Su, S. L. Yu, I. H. Tseng, C. J. Chen, H. C. Hsu, D. C. Chan and Y. L. Chen (2012) Potential therapeutic role of Z-Isochaihulactone in lung cancer through induction of apoptosis via notch signaling. Evid. Based Complement Alternat. Med. 2012:809204. Paavonen, K., P. Puolakkainen, L. Jussila, T. Jahkola and K. Alitalo (2000) Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am. J. Pathol. 156:1499–1504. Park, K. I., H. S. Park, A. Nagappan, G. E. Hong, H. Lee, S. R. Kang, J. A. Kim, J. Zhang, E. H. Kim, W. S. Lee, S. C. Shin, Y. S. Hah and G. S. Kim (2012) Induction of the cell cycle arrest and apoptosis by flavonoids isolated from Korean Citrus aurantium L. in non-small-cell lung cancer cells. Food Chem. 135:2728–2735. Pizarro, J. G., J. Folch, A. Vazquez De la Torre, E. Verdaguer, F. Junyent, J. Jordan, M. Pallas and A. Camins (2009) Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line. Free Radic. Res. 43:985–994. Podar, K. and K. C. Anderson (2005) The pathophysiologic role of VEGF in hematologicmalignancies: therapeutic implications. Blood 105:1383–1395. Rambold, A. S. and J. Lippincott-Schwartz (2011) Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 10:4032–4038. Samarghandian, S., A. Borji, S. K. Farahmand, R. Afshari and S. Davoodi (2013) Crocus sativus L. (saffron) stigma aqueous extract induces apoptosis in alveolar human lung cancer cells through caspase-dependent pathways activation. Biomed. Res. Int. 2013:417928. Sancar, A., L. A. Lindsey-Boltz, K. Unsal-Kacmaz and S. Linn (2004) Molecular mechanisms of mammalian DNA repair and the DNA damagecheckpoints. Annu. Rev. Biochem. 73:39–85. Satyanarayana, A. and P. Kaldis (2009) Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28: 2925–2939. Sausville, E. A. and A. M. Burger (2006) Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 66:3351–3354. Schwartz, A. G., G. M. Prysak, C. H. Bock and M. L. Cote (2007) The molecular epidemiology of lung cancer. Carcinogenesis 28:507–518. Senger, D. R., S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. S. Harvey and H. F. Dvorak (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985. Shyur, L-F., S.-H. Lee, S.-T. Chang, C.-P. Lo, Y.-H. Kuo and S.-Y. Wang (2010) Taiwanin A inhibits MCF-7 cancer cell activity through induction of oxidative stress, regulation of DNA damage check point kinases, and activation of p53 and FasL/Fas signaling path ways. Phytomedicine 18:16–24. Siegel, R., J. Ma, Z. Zou and A. Jemal (2014) Cancer statistics, 2014. CA Cancer J Clin. 64:9–29. Smith, J., L. M. Tho, N. Xu and D. A. Gillespie (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 108:73–112. Stanton, R. A., K. M. Gernert, J. H. Nettles and R. Aneja (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev. 31:443–481. Sundarraj, S., R. Thangam, V. Sreevani, K. Kaveri, P. Gunasekaran, S. Achiraman and S. Kannan (2012) γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J. Ethnopharmacol. 141:803–809. Thangam, R., D. Senthilkumar, V. Suresh, M. Sathuvan, S. Sivasubramanian, K. Pazhanichamy, P. K. Gorlagunta, S. Kannan, P. Gunasekaran, R. Rengasamy and J. Sivaraman (2014) Induction of ROS-dependent mitochondria-mediated intrinsic apoptosis in MDA-MB-231 cells by glycoprotein from Codium decorticatum. J. Agric. Food Chem. 62:3410–3421. Thannickal, V. J. and B. L. Fanburg (2000) Reactive oxygen species in cell signalling. Am. J. Physiol. Lung Cell Mol. Physiol. 279:L1005–L1028. Tovar, C., B. Graves, K. Packman, Z. Filipovic, B. Higgins, M. Xia, C. Tardell, R. Garrido, E. Lee, K. Kolinsky, K. H. To, M. Linn, F. Podlaski, P. Wovkulich, B. Vu and L. T. Vassilev (2013) MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 73:2587–2597. Tsai, C.-C., C.-J. Chen, H.-W. Tseng, K.-F. Hua, R.-Y. Tsai, M.-H. Lai, L.-K. Chao and S. T. Chen (2008) Cytomic screening of immuno-modulating activity compounds from Calocedrus formosana. Comb. Chem. High Throughput Screen 11:834–842. Tung, Y.-T., J.-H. Wu, C.-C. Huang, H.-C. Peng, Y.-L. Chen, S.-C. Yang and S.-T. Chang (2009) Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem. Toxicol. 47:1385–1392. Vakifahmetoglu, H., M. Olsson and B. Zhivotovsky (2008) Death through a tragedy: mitotic catastrophe. Cell Death Diff.15:1153–1162. Vitale, I., L. Galluzzi, M. Castedo and G. Kroemer (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12:385–392. Wang, H. -C., Y. -H. Tseng, H. -R. Wu, F.-H. Chu, Y. -H. Kuo and S. -Y. Wang (2014) Anti-proliferation effect on human breast cancer cells via inhibition of pRb phosphorylation by taiwanin E isolated from Eleutherococcus trifoliatus. Nat. Prod. Commun. 9:1303–1306. Wang, S.-Y., C.-L. Wu, F.-H. Chu, S.-C. Chien, Y.-H. Kuo, L.-F. Shyur and S.-T. Chang (2005) Chemical composition and antifungal activity of essential oil isolated from Chamaecyparis formosensis Matsum. wood. Holzforschung 59: 295–299. Wang, S.-Y., J.-H. Wu, S.-S. Cheng, C.-P. Lo, N.-S. Yang, L.-F. Shyur and S.-T. Chang (2004) Antioxidant activity of extracts from Calocedrus formosana leaf, bark and heartwood. J. Wood Sci. 50:422–426. Warin, R. F., H. Chen, D. N. Soroka, Y. Zhu and S. Sang (2014) Induction of lung cancer cell apoptosis through a p53 pathway by 6-shogaol and its cysteine-conjugated metabolite m2. J. Agric. Food Chem. 62:1352–1362. Way, T.-D., S.-J. Tsai, C.-M. Wang, C.-T. Ho and C.-H. Chou (2014) Chemical constituents of Rhododendron formosanum show pronounced growth inhibitory effect on non-small-cell lung carcinoma cells. J. Agric. Food Chem. 62:875–884. Wlodkowic, D., J. Skommer and Z. Darzynkiewicz (2012) Cytometry of apoptosis. Historical perspective and new advances. Exp. Oncol. 34:255–262. Wu, C.-L., S.-C. Chien, S.-Y. Wang, Y.-H Kuo and S.-T. Chang (2005) Structure-activity relationships of cadinane-type sesquiterpene derivatives against wood-decay fungi. Holzforschung 59: 620-627. Wu, C.-S. Y.-J. Chen, J.-W. Chen, J.-J. Shieh, C.-H. Huang, P.-S. Lin, G.-C. Chang J.-H. Tsai and C.-C. Lin (2012) Terpinen-4-ol induces apoptosis in human non-small cell lung cancer in vitro and in vivo. Evid. Based Complement Altern. Med. 2012:818261. Wu, J.-H., Y.-T. Tung, C.-F. Chyu, S.-C. Chien, S.-Y. Wang, S.-T. Chang and Y.-H. Kuo (2008) Antioxidant activity and constituents of extracts from the root of Garcinia multiflora. J. Wood Sci. 54:383–389. Wukirsari, T., H. Nishiwaki, K. Nishi, T. Sugahara, K. Akiyama, T. Kishida and S. Yamauchi (2014) Cytotoxic activity of dietary lignan and its derivatives: structure-cytotoxic activity relationship of dihydroguaiaretic acid. J. Agric. Food Chem. 62:5305–5315. Xin, H., Y. Kong, Y. Wang, Y. Zhou, Y. Zhu, D. Li and W. Tan (2013) Lignans extracted from Vitex negundo possess cytotoxic activity by G2/M phase cell cycle arrest and apoptosis induction. Phytomedicine 20:640–647. Yamazawa, K., K. Kato, R. Yamauchi and Y. Ueno (1986) Bitter principle of tubers of Sagittaria trifolia (Kuwai). Agric. Biol. Chem. 50:3179. Yang, L., D. Wu, K. Luo, S. Wu and P. Wu (2009) Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells. Cancer Lett. 276:180–188. Yen, P.-L., C.-L. Wu, S.-T. Chang, S.-L. Huang and H.-T. Chang (2012) Antioxidative lignans from phytochemical extract of Calocedrus formasana Florin. BioResources 7:4122–4131. Yen, T.-B., H.-T. Chang, C.-C. Hsieh and S.-T. Chang (2008) Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. formosana (Florin) heartwood. Bioresour. Technol. 99:4871–4877. Yuan, L., S. Wei, J. Wang and X. Liu (2014) Isoorientin induces apoptosis and autophagy simultaneously by reactive oxygen species (ROS)-related p53, PI3K/Akt, JNK, and p38 signaling pathways in HepG2 cancer cells. J. Agric. Food Chem. 62:5390–5400. Yuan, S.-Y., C.-C. Lin, S.-L. Hsu, Y.-W. Cheng, J.-H. Wu, C.-L. Cheng and C.-R. Yang (2011) Leaf extracts of Calocedrus formosana (Florin) induce G2/M cell cycle arrest and apoptosis in human bladder cancer cells. Evid. Based Complement Altern. Med. 2011:380923. Zhang, J. Y., T. Yi, J. Liu, Z. Z. Zhao and H. B. Chen (2013) Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells. J. Agric. Food Chem. 61:2188–2195. Zhao, F., Y. Hu, C. Chong, M. Lu, L. Chen, W. Kan, L. Chen and H. Liu (2014) Ardisiphenol D, a resorcinol derivative identified from Ardisia brevicaulis, exerts antitumor effect through inducing apoptosis in human non-small-cell lung cancer A549 cells. Pharm. Biol. 7:797–803. Zhao, H., F. Traganos and Z. Darzynkiewicz (2008) Phosphorylation of p53 on Ser15 during cell cycle caused by Topo I and Topo II inhibitors in relation to ATM and Chk2 activation. Cell Cycle 7:3048–3055.
台灣肖楠(Calocedrus formosana Florn)為台灣珍貴的針葉樹種,且台灣肖楠葉子抽出成分已被證實具有細胞毒性、抗氧化及抗真菌等生物活性,實具有開發為天然抗癌製劑之潛力。因此,本論文將首次針對台灣肖楠葉子抽出成分及其活性化合物進行體內及體外抗腫瘤活性評估。所得結果發現,台灣肖楠葉子抽出成分中,以正己烷可溶部具有最佳細胞毒性。進一步以管柱層析方式將正己烷可溶部細分為10個次分離部,並針對各分離部進行細胞毒性評估後發現,各次分離部中以次分離部1及4具有較強的細胞毒性。
基於生物活性導向之分離策略,本研究續利用HPLC系統對次分離部1及4進行分離及純化。經HPLC分析後,由次分離部1中得到順式瓔柏酸(trans-Communic acid)及Isoabienol共2個化合物。而由次分離部4中則係得到松柏酸(Pinusolidic acid)及(-)-反式-3-(3,4-亞甲基二氧基芐基)-2-(3,4,5-三甲氧基芐基)丁內酯(Yatein)共2個化合物。各化合物經細胞毒性篩選後,發現以Yatein對A549及CL1-5細胞具有最強細胞毒殺效果,二者中又以對CL1-5細胞之效果較佳。由流式細胞儀分析結果顯示,Yatein可誘導A549及CL1-5細胞之細胞週期停滯於G2/M時期,同時亦可造成肺癌細胞株產生細胞凋亡現象。此外,經Yatein處理後之肺癌細胞株,其Cyclin B1及磷酸化Cdc 2等G2/M時期相關調節蛋白表現量會有明顯增加情形。然而,經Yatein處理後之A549及CL1-5細胞,其Cdc 2及Cdc 25c等調節蛋白之表現量並無明顯改變。而本論文之試驗結果亦發現,Yatein之抗肺癌作用機轉與上游之ATM/ATR及p53等調控路徑活化有密切的關連性。另一方面, Yatein可扮演微管去穩定劑之角色,進而干擾A549及CL1-5細胞之微管聚合動力學,此為Yatein誘導肺癌細胞株產生G2/M時期停滯可能原因之一。

Calocedrus formosana Florin is a well-known softwood tree species in Taiwan. The leaves extract of C. formosana had been reported with excellent bioactivities such as cytotoxic, antioxidant and antifungi effects. According to these studies, the leaves extract of C. formosana may be a potential candidate for novel natural anticancer agent. In the present study, the anti-lung cancer efficacy of C. formosana leaves extract and its derived active phytocompounds, were evaluated using in vitro cell-based models and in vivo xenograft mice model for the first time. Among the crude extract and its derived fractions from leaves of C. formosana, the n-hexane fraction exhibited the best cytotoxicity potential. Following by column chromatography, 10 subfractions were obtained from the n-hexane fraction, and the cytotoxic effects of each subfraction were also determined in this study. The results revealed that the sunfractions 1 and 4 exhibited better cytotoxic potential than other subfractions.
Based on the bioactivity-guided isolation principle, the subfractions 1 and 4 were then separated using HPLC system. After HPLC analyzed, trans-Communic acid and isoabienol were isolated from subfraction 1; pinusolidic acid and yatein were isolated from subfraction 4. Among these phytocompounds, yatein exhibited the best cytotoxicity in A549 and CL1-5 cells. In addition, the CL1-5 cells were more sensitive than A549 cells after yatein treatment. According to flow cytometry analysis, the result revealed that yatein induced G2/M arrest and apoptosis in these two lung cancer cell lines. Furthermore, the expression of G2/M arrest related regulatory proteins such as Cyclin B1 and p-Cdc 2 were increased after treatment with yatein in A549 and CL1-5 cells. However, the Cdc 2 and Cdc 25c expressions of A549 and CL1-5 cells were no significant difference between vehicle control group and yatein treatment group. The upstream pathways including ATM/ATR pathway and p53 pathway were also involved in the anti-ling cancer mechanism of yatein. In this study, we also found that yatein act as a microtubule destabilizer that interfered microtubule dynamic of A549 and CL1-5 cells, which is another possible reason for yatein induced significantly cell populations staying in G2/M arrest.
On the other hand, the in vivo anti-lung cancer activity of yatein was also evaluated in this study using xenofraft mice model. The tumor size and weight in xenograft mice were decreased after yatein treatment. Accordingly, the daily diet intake and body weight of xenograft mice have no significant difference between the vehicle control group and the yatein treatment group. Based on these findings, it provides insight into the in vitro and in vivo anti-lung tumor efficacy of yatein, rendering this phytocompound a potential anticancer drug for NSCLC.
其他識別: U0005-2501201516590800
Rights: 同意授權瀏覽/列印電子全文服務,2018-01-27起公開。
Appears in Collections:森林學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-8099033005-1.pdf2.83 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.