Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89277
標題: Preparation and properties of non-solvent type and waterborne epoxy resins containing liquefied wood
含液化木材無溶劑型及水性環氧樹脂之製備及其性質
作者: Jeun-Yan Lam
林俊延
關鍵字: 雙酚A型環氧樹脂;液化木材;乳化劑;相轉換;水性環氧樹脂;Bisphenol A type epoxy resins;Liquefied wood;Emulsifier;Phase inversion;Waterborne epoxy resins
引用: 1. 王心偉、李群、孔合心、魏國濤 (2012) 自乳化型非離子水性環氧樹脂固化劑的合成與性能研究。化工新型材料 40(12):73-75。 2. 王鳴飛、王平華、劉春華 (2013) 水性環氧樹脂的合成及性能研究。上海塗料 51(1):19-22。 3. 任天斌、黃艷霞、范亞平、顧國芳、朱立華、任傑 (2006) 自乳化型水性環氧樹脂固化劑的製備及性能。建築材料學報 9(3):317-322。 4. 朱偉超、張榮輝 (2007) 水性環氧樹脂在路面及橋面維修中的應用。山西建築33(32):157-158。 5. 何青峰、陳志明 (2004) 水性環氧乳化劑合成與乳液製備工藝探討。化學反應工程與工藝 20(3):255-259。 6. 余麗麗、李仲謹、呂世民、朱雷 (2009) 水性環氧樹脂的合成及其應用。化工科技17(4):46-51。 7. 吳秋昌、李文昭 (2009a) 多元醇液化木質材料-環氧樹脂之反應特性及其硬化樹脂之熱性質。林產工業 28(1):1-12。 8. 吳秋昌、李文昭 (2009b) 酚/雙酚A混合液液化柳杉之性質。林產工業 28(2):85-98。 9. 昌興龍、古緒鵬、袁美華 (2012) 水性環氧乳液的製備及性能研究。現代塗料與塗裝 15(10):1-3。 10. 施雪珍、陳鋌、顧國芳 (2002) 相反轉法製備水性環氧乳液。塗料工業 7:18-20。 11. 柏幹榮、胡友梅 (2002) 用正交試驗法研製替硝唑固體分散物。第三軍醫大學學報 24(9):1104-1105。 12. 倪維良、柳雲騏、王林同、周欣明、陳克磊、孫玲玲 (2011) 乳化型水性環氧樹脂固化劑的合成與性能研究。化工新型材料 39(7):134-137。 13. 秦衛、舒武炳、明杜 (2011) 水性環氧樹脂乳化型固化劑固化特性研究。中國膠黏劑 20(2):9-12。 14. 馬妤 (2009) 新型瓦楞紙增強劑的製備與應用。造紙科學與技術 28(1):50-53。 15. 高黨鴿、李蕊、馬建中 (2014) 環氧樹脂水性化研究及其在製革工業中的應用進展(續)。中國皮革43(11):50-53。 16. 曹恒光、連大成 (2001) 淺談微乳液。物理雙月刊 23(4):488-493。 17. 梁平輝 (1997) 玻璃纖維浸潤劑用水基環氧樹脂。玻璃鋼/複合材料1:44-51。 18. 陳鋌、施雪珍、顧國芳 (2002) 雙組分水性環氧樹脂塗料。高分子通報 6:63-70。 19. 楊振忠、許元澤、徐懋、趙得祿 (1997) 環氧樹脂微粒化水基化體系。高分子通報 3:190-194。 20. 葉文見、孫紹暉、孫培勤、劉大壯 (2006) 非離子型乳化劑的合成及其水性環築乳液的製備。上海塗料 44(11):19-22。 21. 鄒莉、鄒林、劉小?、姚佳、蔡永源 (2014) 水性環氧樹脂塗料應用進展。熱固型樹脂 29(3):62-65。 22. Ahmad, M. B., M. Y. Tay, K. Shameli, M. Z. Hussein and J. J. Lim (2011) Green Synthesis and Characterization of Silver/Chitosan/Polyethylene Glycol Nanocomposites without any Reducing Agent. Int. J. Mol. Sci. 12: 4872–4884. 23. Binks, B. P. (1993) Relationship between microemulsion phase behavior and macroemulsion type in systems containing nonionic surfactant. Langmuir 9: 25-28. 24. Chaudhary, V., A. K. Thakur and A. K. Bhowmick (2011) Improved optical and electrical response in metal–polymer nanocomposites for photovoltaic applications. J. Mater. Sci. 46: 6096–6105. 25. Cheng, T. L., K. H. Chuang, B. M. Chen and S. R. Roffler (2012) Analytical measurement of PEGylated molecules. Bioconjugate Chem. 23: 881-899. 26. Cherdoud-Chihani, A., M. Mouzali and M. J. M. Abadie (2003) Study of crosslinking acid copolymer/DGEBA Systems by FTIR. J. Appl. Polym. Sci. 87: 2033-2051. 27. Costa, L., L. R. Montelera, G. Camino, E. D. Weil and E. M. Pearce (1997) Structure-charring relationship in phenol-formaldehyde type resins. Polym. Degrad. Stabil. 56: 23-35. 28. Fernandez, P., V. André, J. Rieger and A. Kühnle (2004) Nano-emulsion formation by emulsion phase inversion. Colloids Surf., A 251: 53-58. 29. Francis, B., V. L. Rao, S. Jose, B. K. Catherine, R. Ramaswamy, J. Jose and S. Thomas (2006) Poly(ether ether ketone) with pendent methyl groups as a toughening agent for amine cured DGEBA epoxy resin. J. Mater. Sci. 41: 5467–5479. 30. Galindo-Alvarez, J., V. Sadtler, L. Choplin and J. Salager (2011) Viscous oil emulsification by catastrophic phase inversion: Influence of oil viscosity and process conditions. Ind. Eng. Chem. Res. 50: 5575-5583. 31. Garcia, F. G., B. G. Soares, V. J. R. R. Pita, R. Sánchez and J. Rieumont (2007) Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. J. Appl. Polym. Sci. 106: 2047-2055. 32. Gerbase, A. E., C. L. Petzhold and A. P. O. Costa (2002) Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J. Am. Oil Chem. Soc. 79: 797-802. 33. Goulding, T. M. (2003) Epoxy resin adhesives. In. A. Pizzi, K. L. Mittal (Eds.), Handbook of Adhesive Technology. Marcel Dekker Inc., New York, pp.823-838. 34. Hassan, E. M. and N. Shukry (2008) Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues. Ind. Crops Prod. 27: 33-38. 35. Heux, L., J. L. Halary, F. Lauprêtre and L. Monnerie (1997) Dynamic mechanical and 13C n.m.r. investigations of molecular motions involved in the β relaxation of epoxy networks based on DGEBA and aliphatic amines. Polymer 38(8): 1767-1778. 36. Hsiue, G. H., Y. L. Liu and H. H. Liao (2001) Flame-retardant epoxy resins: An approach from organic-inorganic hybrid nanocomposites. J. Polym. Sci., Part A: Polym. Chem. 39: 986-996. 37. Jafari, S. M., Y. He and B. Bhandari (2007) Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng. 82: 478-488. 38. Jahanzad, F., G. Crombie, R. Innes and S. Sajjadi (2009) Catastrophic phase inversion via formation of multiple emulsions: A prerequisite for formation of fine emulsions. Chem. Eng. Res. Des. 87: 492–498. 39. Karaman, S., A. Karaipekli, A. Sarı and A. Biçer (2011) Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 95: 1647–1653. 40. Kishi, H., Y. Akamatsu, M. Noguchi, A. Fujita, S. Matsuda and H. Nishida (2011) Synthesis of epoxy resins from alcohol-liquefied wood and the mechanical properties of the cured resins. J. Appl. Polym. Sci. 120: 745–751. 41. Koike, T. (2012) Progress in development of epoxy resin systems based on wood biomass in Japan. Polym. Eng. Sci. 52: 701-717. 42. Kuo, P. Y., M. Sain and N. Yan (2014) Synthesis and characterization of an extractive-based bio-epoxy resin from beetle infested Pinus contorta bark. Green Chem. 16: 3483–3493. 43. Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass Bioenergy 21: 381-390. 44. Laza, J. M., J. L.Vilas, M. T. Garay, M. Rodríguez and L. M. León (2005) Dynamic mechanical properties of epoxy-phenolic mixtures. J. Polym. Sci. Pt. B-Polym. Phys. 43: 1548-1555. 45. Lee, S. H., Y. Teramoto and N. Shiraishi (2002) Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J. Appl. Polym. Sci. 84: 468-472. 46. Lee, W. J. and M. S. Lin (2008) Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. J. Appl. Polym. Sci. 109: 23-31. 47. Lee, W. J., E. S. Kuo, C. Y. Chao, Y. P. Kao (2015) Properties of polyurethane (PUR) films prepared from liquefied wood (LW) and ethylene glycol (EG). Holzforschung 69(5): 547-554. 48. Lee, W. J., K. C. Chang and I. M. Tseng (2012) Properties of phenol-formaldehyde resins prepared from phenol-liquefied lignin. J. Appl. Polym. Sci. 124:4782-4788. 49. Levchik, S. V. and E. D Weil (2004) Thermal decomposition, combustion and flame-retardancy of epoxy resins - a review of the recent literature. Polym. Int. 53: 1901-1929. 50. Li, M. S., C. C. M. Ma, M. L. Lin and F. C. Chang (1997) Chemical reaction occurring during the preparation of polycarbonate-epoxy blends. Polymer 38: 4903-4913. 51. Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi (1994) Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. J. Appl. Polym. Sci. 52: 1629-1636. 52. Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (2004) Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydr. Polym. 57: 123-129. 53. Ma, S., X. Liu, L. Fan, Y. Jiang, L. Cao, Z. Tang and J. Zhu (2014) Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity. ChemSusChem. 7: 555-562. 54. Martín, C., G. Lligadas, J. C. Ronda, M. Galià and V. Cádiz (2006) Synthesis of novel boron-containing epoxy-novolac resins and properties of cured products. J. Appl. Polym. Sci. 44: 6332-6344. 55. Mayer, S., J. Weiss and D. J. McClements (2013) Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: Factors influencing droplet size and stability. J. Colloid Interface Sci. 402: 122–130. 56. McClements, D. J. (2004) Food emulsions: principles, practice, and techniques. 2nd ed., CRC Press, United States of America, pp.269-339. 57. McClements, D. J. (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7: 2297–2316. 58. Mimura, K., H. Ito and H. Fujioka (2000) Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins. Polymer 41: 4451-4459. 59. Ostertag, F., J. Weiss and D. J. McClements (2012) Low-energy formation of edible nanoemulsions: Factors influencing droplet size produced by emulsion phase inversion. J. Colloid Interface Sci. 388: 95-102. 60. Pan, H. (2011) Synthesis of polymers from organic solvent liquefied biomass: A review. Renewable Sustainable Energy Rev. 15: 3454-3463. 61. Pillai, J. P., J. Pionteck, R. Häßler, C. Sinturel, V. S. Mathew and S. Thomas (2012) Effect of cure conditions on the generated morphology and viscoelastic properties of a poly(acrylonitrile-butadiene-styrene) modified epoxy-amine system. Ind. Eng. Chem. Res. 51: 2586-2595. 62. Rosen, S. (1982) Fundamental of principles of polymeric materials. John Wiley & Sons, Inc. New York, pp.47-52, 103-105. 63. Rubin, B. S. (2011) Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol. 127: 27-34. 64. Sadurní, N., C. Solans, N. Azemar and M. J. García-Celma (2005) Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur. J. Pharm. Sci. 26: 438-445. 65. Sandler, S. R., W. Karo, J. A. Bonesteel and E. M. Pearce (1998) Polymer Synthesis and Characterization. Academic Press, San Diego, pp.61-67. 66. Sasaki, Y., N. Konishi, M. Kasuya, M. Kohri, T. Taniguchi and K. Kishikawa (2015) Preparation of size-controlled polymer particles by polymerization of O/W emulsion monomer droplets obtained through phase inversion temperature emulsification using amphiphilic comb-like block polymers. Colloids Surf., A 482: 68-78. 67. Shiraishi, N. (1998) Liquefaction of wood and its applications. In. Prasad, P. N., J. E. Mark, S. H. Kandil and Z. H. Kafafi (Eds.), Science and Technology of Polymers and Advanced Materials. Plenum Press, New York, pp.699-707. 68. Slomkowski, S., J. V. Alemán, R. G. Gilbert, M. Hess, K. Horie, R. G. Jones, P. Kubisa, I. Meisel, W. Mormann, S. Penczek and R. F. T. Stepto. (2011) Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011). Pure Appl. Chem. 83(12): 2229−2259. 69. Tadros, T. F. (2009) Emulsion science and technology: A general introduction. In. Tadros, T. F. (Ed.), Emulsion science and technology. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp.1–56. 70. Tripathi, G. and D. Srivastava (2007) Effect of carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. Mater. Sci. Eng., A 443: 262–269. 71. Vandenberg, L. N., R. Hauser, M. Marcus, N. Olea and W. V. Welshons (2007) Human exposure to bisphenol A (BPA). Reprod. Toxicol. 24: 139-177. 72. Wang, C., L. Feng, H. Yang, G. Xin, W. Li, J. Zheng, W. Tian, and X. Li (2012) Graphene oxide stabilized polyethylene glycol for heat storage. Phys. Chem. Chem. Phys. 14: 13233–13238. 73. Wetherill, Y. B., C. E. Petre, K. R. Monk, A. Puga and K. E. Knudsen (2002) The xenoestrogen bisphenol A induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells. Mol. Cancer Ther. 1: 515-524. 74. Wu, C. C. and W. J. Lee (2010) Synthesis and properties of copolymer epoxy resins prepared from copolymerization of bisphenol A, epichlorohydrin and liquefied Dendrocalamus latiflorus. J. Appl. Polym. Sci. 116: 2065-2073. 75. Yang, Z. Z., Y. Z. Xu, D. L. Zhao and M. Xu (2000) Preparation of waterborne dispersions of epoxy resin by the phase-inversion emulsification technique. 2. Theoretical consideration of the phase-inversion process. Colloid Polym. Sci. 278: 1103-1108. 76. Yip, J., M. Chen, Y. S. Szeto and S. Yan (2009) Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents. Bioresour. Technol. 100: 6674-6678.
摘要: 
本研究將環氧氯丙烷/雙酚A以不同莫耳數比及反應時間合成雙酚A型環氧樹脂。另將柳杉(Cryptomeria japonica Don.; Japanese cedar)木材以酚/雙酚A為溶劑進行液化處理,以所得液化產物合成含生質物組成分環氧樹脂,並將兩種環氧樹脂以不同重量比混合製備聚摻合樹脂。進一步則利用雙酚A型環氧樹脂與不同分子量聚乙二醇以不同莫耳數比混合製備同時具備環氧基與羥基之乳化劑,並探討添加此乳化劑之環氧樹脂藉由相轉換法製備水性環氧樹脂乳液之可行性。由試驗結果顯示,環氧樹脂合成時採用環氧氯丙烷/雙酚A之莫耳數比較低者,其合成樹脂之平均分子量、黏度及環氧當量較大,DSC熱分析之放熱峰向高溫側偏移,反應熱降低,硬化樹脂溶出試驗重量保留率、抗彎強度、儲存模數、相轉移溫度降低,然硬化樹脂之熱抵抗性提高;而延長反應時間對其性質則無明顯影響。含液化木材之摻合樹脂之反應性較低,然可提高其硬化樹脂在300°C以上熱抵抗性。水性環氧樹脂製備時採用較高分子量聚乙二醇,且聚乙二醇/環氧樹脂莫耳數比接近1/1之乳化劑所合成者有較佳之乳液穩定性。DSC及TGA分析顯示,不同條件水性環氧樹脂之下層樹脂液有相似之硬化性及硬化樹脂之熱抵抗性,然採用分子量4000,聚乙二醇/環氧樹脂莫耳數比1/0.8之乳化劑所製備之水性環氧樹脂成型物有較佳之機械性質。利用不同重量比摻合環氧樹脂製備之水性樹脂比較,採用含生質物環氧樹脂比例較高之摻合樹脂所合成水性環氧樹脂之成型物機械性質較低,但300°C以上熱抵抗性較佳。

In this study, bisphenol A type epoxy resins were synthesized by reacting epichlorohydrin and bisphenol A with different molar ratios and reaction times. Cryptomeria japonica Don. (Japanese cedar) were liquefied in a mixture of phenol/bisphenol A. The liquefied products were used as raw materials to prepare a biomass containing epoxy resin. The blended epoxy resins were prepared by mixing two types epoxy resin with different weight ratios. Furthermore, the emulsifiers that contained both epoxide group and hydroxyl group were synthesized by the mixture of bisphenol A and different molecular weight [poly(ethylene glycol); PEG] with various molar ratios. The feasibility of waterborne epoxy resins that prepared by adding the emulsifier and processed via phase inversion method was investigated. The results show that epoxy resins prepared with lower epichlorohydrin/bisphenol A molar ratio had higher average molecular weight, viscosity, and epoxy equivalent weight. The exothermic peak appeared at DSC thermal analysis shifted to higher temperature with less reaction heat. In addition, the weight retention, bending strength, storage modulus and phase transition temperature of cured resins decreased but the heat resistance increased. However, the properties of epoxy resins did not be influenced by the reaction time. Blended resins containing liquefied wood have less reactivity, but the cured resin had higher heat resistance at temperature higher than 300°C. Waterborne epoxy resins prepared with the emulsifier that had a higher PEG molecular weight, and had the PEG/epoxy molar ratio closed to 1/1 had a better emulsion stability. DSC and TGA analysis shows that the bottom layer resin for waterborne epoxy resins prepared with different conditions had the similar curing behavior and had the same thermal resistance for cured resins. However, moldings made with waterborne epoxy resin that prepared with the emulsifier that synthesized with PEG having the molecular weight of 4000 and the PEG/epoxy molar ratio of 1/0.8 had better mechanical properties. Comparison between the weight ratios of blended epoxy resin, moldings made with the waterborne resin that had more content of biomass containing epoxy resin had lower mechanical properties. However, they had better heat resistance at temperature over 300°C.
URI: http://hdl.handle.net/11455/89277
其他識別: U0005-0808201519125200
Rights: 同意授權瀏覽/列印電子全文服務,2016-08-13起公開。
Appears in Collections:森林學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102033022-1.pdf4.75 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.