Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89279
標題: The performance of germination and seedling growth of Leucaena leucocephala (Lam.) and indigenous trees species in drought environment
夏威夷型銀合歡與本土樹種在乾旱環境下種子發芽及苗木生長之表現
作者: En-U Liu
劉恩妤
關鍵字: 外來樹種;原生樹種;乾旱;exotic tree species;indigenous trees species;drought
引用: 王相華、郭耀綸、陳芬蕙 (2011) 墾丁熱帶海岸林植生復舊操作技術手冊。墾丁國家公園管理處。1-18頁。 沈里國、簡慶德、林讚標 (2000) 甲基肌醇半乳吡喃糖和其他糖類的玻璃質化形成及其保護人工脂囊膜免於乾燥受損的能力。台灣林業科學 15: 293-301。 李昭宗 (2003) 恆春地區銀合歡入侵及擴散之研究。屏東科技大學森林學研究所碩士論文。 呂福原、陳安民 (2002) 墾丁國家公園外來種植物對原生植群之影響: 以銀合歡為例。保育研究報告第112號。墾丁國家公園管理處。 高潔、曹坤芳、王煥校 (2004) 乾熱河谷9種造林樹種在旱季的水分關係及氣孔導度。植物生態學報 28: 186-190。 許正一、簡士濠 (2010) 墾丁熱帶海岸林生態復舊研究及監測計畫 (二): 熱海岸林土壤性質空間分布及其對海岸林樹種生長的影響。墾丁國家公園管理處。76-12頁。 陳凌雲、劉瓊霦 (2009) 升高二氧化碳濃度與水分缺乏對樟樹苗木形質生長及碳水化合物分配的影響。林業研究季刊 31: 43-53。 郭耀綸 (1994) 從生理及形態上比較共存之相思樹及蒲姜對乾旱環境的適應。中華林學季刊 27: 37-54。 郭耀綸 (2013) 植物耐陰性及台灣原生樹種耐陰性類別。林業研究專訊 20: 36-40。 郭昱君 (2007) 土地利用變遷對入侵植物分布之影響以墾丁國家公園為例。國立台灣大學生命科學院生態學與演化生物學研究所碩士論文。 馮郁筑 (2008) 航空照片應用於恆春半島之銀合歡植群擴散。屏東科技大學森林系學位論文。 潘富俊 (2007) 福爾摩沙植物記: 101種台灣植物文化圖鑑及27種台灣植物文化議題。遠流出版事業股份有限公司。 譚新導、張生芳、張輝波、張中潤、陳志權、符悅冠 (2007) 中國南部新發現的入侵蟲害-銀合歡豆象。熱帶作物學報 28: 101-103。 蘇鴻傑、蘇中原 (1988) 墾丁國家公園植群之多變數分析。中華林學季刊 21: 17-32。 Bates, L. S., R. P. Waldren and I. D. Teare (1973) Rapid determination of free proline for water stress studies. Plant Soil 39: 205-207. Bewley, J. D. (1997) Seed germination and dormancy. Plant Cell 9: 1055-1066. Bewley, J. D. and M. Black (1994) Seeds. Physiology of Development and Germination, 2nd ed. Plenum Press, New York. Bianchi, G., A. Gamba, C. Murelli, F. Salamini and D. Bartels (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant Journal 1: 355-359. Blakesley, D., K. Hardwick and S. Elliott (2002) Research needs fot restoring tropical forest in Southeast Asia for wildlife conservation: framework species selection and seed propagation. New Forests 24: 165-174. Bliss, F.A. (1993) Breeding common bean for improved biological nitrogen fixation, Plant Soil 152: 71–79. Bowers, J. E. ( 2005) Effects of drought on shrub survival and longevity in the northern Sonoran Desert. Journal of the Torrey Botanical Society 132: 421-431. Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. Brenac, P., M. Horbowicz, S. Downer, A. Dickerman, M. Smith and R. Obendorf (1997) Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.) seed development and maturation. Journal Plant Physiology 150: 481-488. Brugging, T. and P. van der Toorn (1995) Induction of desiccation tolerance in germinated seeds. Seed Science Research 5: 1-4. Bryant, G., K. L. Koster and J. Wolfe (2001) Membrane behaviour in seeds and other systems at low water content: the various effects of solutes. Seed Science Research 11: 17-25. Budowski, G. (1963) Forest succession in tropical lowlands. Turrialba 13: 42-44. Buitink J, B. L. Vu, P. Satour and O. Leprince (2003) The re-establishment of desiccation tolerance in germinated radicles of Medicago truncatula Gaertn. Seeds. Seed Science Research 13: 273-286. Casper, B. B., I. N. Forseth, H. Kempenich, S. Seltzer and K. Xavier (2001) Drought prolongs leaf life span in the herhaceous desert perennial Cryptantha flava. Functional Ecology 15: 740-747. Cattivelli, L., F. Rizza, F. Badeck , E. Mazzucotelli, A. M. Mastrangelo, E. Francia, A. Tondelli and A. M. Stanca (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research 105: 1–14. Chapin, F. S., C. H. S. Walter and D. T. Clarkson (1988) Growth response of barley and tomato to nitrogen stress and its control by abscisic acid, water relations and photosynthesis. Planta 173: 352-366. Chaves, M. M., J. P. Maroco and J. S. Pereira (2003) Understanding plant response to drought – from genes to the whole plant. Functional Plant Biology 30: 239-264. Chaves, M. M., J. S. Pereira, J. Maroco, M. L. Rodrigues, C. P. P. Ricardo, M. L. Osorio, I. Carvalho, T. Faria and C. Pinheiro (2002) How plants cope with waterstress in the field. Photosynthesis and growth. Annals of Botany 89: 907-916. Chien, C. T., T. P. Lin, C. G. Juo and G. R. Her (1996) Occurrence of a novel galactopinitol and its changes with other non-reducing sugars during development of Leucaena leucoephala seeds. Plant and Cell Physiology 37: 539-544. Childs, E. C. (1940) The use of soil moisture characteristics in soil studies. Soil Science 50: 239-252. Corbineau, F., P. Berjak, N. Pammenter, D. Vinel, M. A. Picard and D. Come (2004) Reversible cellular and metabolic changes induced by dehydration in desiccation-tolerant wheat seedling shoots. Physiologia Plantarum 122: 28-38. Cornic, G. and C. Fresneau (2002) Photosynthetic carbon reduction and oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Annals of Botany 89: 887-894. Correia, M. J. and J. S. Pereira (1994) Abscisic acid in apoplastic sap can account for the restriction in leaf conductance of white lipins during moderate soil dring and after rewatering. Plant, Cell and Environment 17: 845-852. Crowe, J. H., F. A. Hoekstra and L. M. Crowe (1992) Anhydrobiosis. Annual Review of Plant Physiology 54: 579-599. DaMatta, F. M., R. A. Loos, E. A. Silva and M. E. Loureiro (2002) Limitation to photosynthesis in Coffea canephora as a result of nitrogen and water availability. Journal of Plant Physiology 159: 975-981. Damour, G., M. Vandame and L. Urban (2008) Long-term drought modifies the fundamental relationships between light exposure, leaf nitrogen content and photosynthetic capacity in leaves of the lychee tree (Litchi chinensis). Journal of Plant Physiology 165: 1370-1378. David, M. M., D. Coelho, I. Barrote and M. J. Correia (1998) Leaf age effects on photosynthetic activity and sugar accumulation in droughted and rewatered Lupin albus plants. Australian Journal of Plant Physiology 25: 299-306. Davies, W. J., F. Tardieu and C. L. Trejo (1994) How do chemical signals work in plant that grow in drying soil? Plant Physiology 104: 309-314. Dı'az del Castillo, L. and D. B. Layzell (1995) Drought stress, permeability to O2 diffusion, and the respiratory kinetics of soybean root nodules, Plant Physiology 107: 1187–1194. Dıaz-Lopez, L., V. Gimeno, I. Simon, V. Martineez, W. M. Rodriguez-Ortega and F. Garcia-Sanchez (2012) Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agricultural Water Management 105: 48-56. Dickson, R. E. and P. T. Tomlinson (1996) Oak growth, development and carbon metabolism in response to water stress. Annals of Forest Science 53: 181-196. Downiea, B and J. D. Bewleyb (2000) Soluble sugar content of white spruce (Picea glauca) seeds during and after germination. Physiologia Plantarum 110: 1-12. Duan, J., M. Zhang, H. Zhang, H. Xiong, P. Liu, J. Ali, J. Li and Z. Li (2012) OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Science 196: 143-151. Editorial Committee of the Flora of Taiwan (eds.) (1994) Flora of Taiwan, Volume Three. 2nd ed. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan. Evans, J. R. (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9-19. Farrant, J. M. (2000) A comparison of mechanism of desiccation tolerance among three angiosperm resurrection plat species. Plant Ecology 151: 29-39. Flexas, J. and H. Medrano (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 89: 183-189. Foyer, C. H. and G. Noctor (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Plnat Physiology 119: 355-364. Gabara, B., M. Sklodowska, A. Wyrwicka, S. Glinska and M. Gapinska(2003)Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. Leaves sprayed with acid rain. Plant Science 164: 507-516. Gomes, F. P., M. A. Olvia, M. S. Mielke, A. A. F. Almeida and L. A. Aquino (2010) Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Scientia Horticulturae 126: 379-384. Gonzalez-Dugo, V., J. L. Durand and F. Gastal (2010) Water deficit and nitrogen nutrition of crops. A review. Agronomy for Sustainable Development 30: 529-544. Gonzalez-Dugo, V., J. L. Durand, F. Gastal, T. Bariac and J. Poincheval (2012) Restricted root to shoot translocation and descreased sink re responsible for limited nitrogen uptake in threegrass species under water deficit. Environmental and Experimental Botany 75: 258-267. Gorecki, F. J, A. I. Piotrowicz-Cieslak, L.B. Lahuta and R. L Obendorf (1997) Soluble carbohydrates in desiccation tolerance of yellow lupin seeds during maturation and germination. Seed Science Research 7: 107-115. Gorecki, R. J., L. B. Lahuta, A. D. Jones and C. L. Hedley (1999) Soluble sugars in maturing pea seeds of different lines in relation to desiccation tolerance. In: Black M, Bradford K. J., Vazquez-Ramos J. (eds) Seed Biology: Advances And Applications. CABI publishing press, Wallingford, Oxon, pp. 67-74. Gorgocena, Y., I. Iturbe-Ormaetxe, P. R. Escuredo and M. Becana (1995) Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant Physiology 108: 753-759. Green, P., P. S. Lake and D. O'Dowd (2004) Resistance of island rainforest to invasion by alien plants: influence of microhabitat and herbivory on seedling performance. Biological Invasions 6: 1-9. Grime, J. P. (1993) Vegetation functional classification system as approaches to predicting and quantifying global vegetation change. In: Solomon, A., Shugart, H. (Eds.), Vegetation Dynamics and Climate Change. Chapman and Hall, New York, pp. 293-305. Guha, A., D. Sengupta, G. K. Rasineni and A. R. Reddy (2010) An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora 205: 144-151. Hermans, C., J. P. Hammond, P. J. White and N. Verbruggen (2006) How do plants responsed to nutrient shortage by biomass allocation. TRENDS in Plant Science 11: 610-617. Hoekstra, F. A., A. G. Elena and J. Buitink (2001) Mechanisms of plant desiccation tolerance. Trends in Plant Science 6: 431-438. Hoekstra, F. A, A. M. Haigh, F. A. A. Tetteroo and T. van Roekel (1994) Changes in soluble sugars in relation to desiccation tolerance in cauliflower seeds. Seed Science Research 4: 143-147. Hoekstra, F.A., E. A. Golovina, A. C. Van Aelst and M. A. Hemminga (1999) Imbibitional leakage from anhydrobiotes revisited. Plant, Cell and Environment 22: 1121-1131. Holthuijzen, A. M. A. and J. H. A. Boerboom (1982) The Cecropia seedbank in the Surinam lowland rain forest. Biotropica 14: 62-68. Horbowicz, M and Obendorf RL (1994) Seed desiccation tolerance and storability: Dependence of flatulence-producing oligosaccharides and cyclitols - review and survey. Seed Science Research 4: 385-405. Hsiao, T. C. (1973) Plant response to water stress. Annual Review of Physiology 24: 519-570. Hsu, H. H. and C. T. Chen (2002) Observed and Projected Climate Change in Taiwan. Meteorology and Atmospheric Physics 79: 87-104. Huang, H., I. M. Moller and S. O. Song (2012) Proteomics of desiccation tolerance during development and germination of maize embryos. Journal of Proteomics 75: 1247-1262. Ishida, A, S. Diloksumpun, P. Ladpala, D. Staporn, S. Panuthai, M. Gamo, K.Yazaki, M. Ishizuka and L. Puangchit (2006) Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand. Tree Physiology 26: 643-656. Jackson, R. B., J. S. Sperry and T. E. Dawson (2000) Root water uptake and transport: using physiological processes in global predictions. Trends in Plant Science 5: 482-488. Jones, H. G. (1998) Stomatal control of photosynthesis and transpiration. Journal of Experimental Botany 49: 387-398. Joshi, R., M. V. Ramanarao and N. Baisakh (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiology and Biochemistry 65: 61-66. Khanna-Chopra, R. B. Srivalli and Y. S. Ahlawat (1999) Drought induces many forms of cystrine protreases not observed during natural senescence. Biochemical and Biophysical Research Communications 255: 324-327. King, C. A. and L. C. Purcell (2006) Genotype variation for shoot N concentration and response to water deficit in soybran. Crop Science 46: 2396-2402. Koster, K. and A. C. Leopold (1988) Sugars and Desiccation Tolerance in Seeds. Plant Physiology 88: 829-832. Kuo, Y. M, H. J. Chu, T. Y Pan and H. L Yu (2011) Investigating common trends of annual maximum rainfalls during heavy rainfall events in southern Taiwan. Journal of Hydrology 409: 749-758. Laura, V. A., A. A. de Alvarenga and M. de Arrigoni (1994) Effects of growth regulators, temperature, light, storage and other factors on the Muntingia calabura L. seed germination. Seed Science Technology 22: 573-579. Lehner, A., C. Bailly, B. Flechel, P. Poels, D. Co ˆme and F. Corbineau (2006) Changes in wheat seed germination ability, soluble carbohydrate and antioxidant enzyme activities in the embryo during the desiccation phase of maturation. Journal of Cereal Science 43: 175-182. Leprince, O., A. van der Werf, R. Deltour and H. Lambers (1992) Respiratory pathways in germination maize radicles correlated with desiccation tolerance and soluble sugars. Physiologia Plantarum 85: 581-588. Li, X., J. Zhuo, Y. Jing, X. Liu and X. Wang (2011) Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development. Journal of Plant Physiology 168: 1761-1770. Lin, T. P. and N. H. Huang (1994) The relationship between carbohydrate composition of some tree seeds and their longevity. Journal Experimental Botany 45:1289-1294. Lin, T. P, W. L. Yen and C. T Chien (1998) Disappearance of desiccation tolerance of imbibed crop seeds is not associated with the decline of oligosaccharides. Journal of Experimental Botany 49: 1203-1212. Liu, C., Y. Liu, K. Guo, D. Fan, G. Li and Y. Zheng (2011) Effects of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in krast habitats of southwestern China. Environmental and Experimental Botany 71: 174-183. Lodeiro, A. R., P. Gonzalez, A. Hernandez, L. J. Balague and G. Faveluke (2000) Comparison of drought tolerance in nitrogen-fixing and inorganic nitrogen-grown common beans. Plant Science 154: 31-41. Lotter, D., A. J. Valentine, E. A. van Garderen and M. Tadross (2014) Physiological responses of a fynbos legume, Aspalathus linearis to drought stress. South African Journal of Botany 94: 218-223. Ludlow, M. M. (1989) Strategies of response to water stress. In: K. H. Kreeb, H. Richter and T. M. Hinckley (eds) Structural and functional response to environmental stress. SPB Academic press, Hague, pp. 269-281. Macadam, J. W., C. J. Nelson and R. E. Sharp (1992) Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology 99: 872-878. Mahouachi, J. (2009) Changes in nutrient concentrations and leaf gas exchanges parameters in banana plantlets under gradual soil moisture depletion. Scientia Horticuturae 120: 460-466. Main, E. L, D. M. Pharr, S. C. Huber and D. E Moreland (1983) Control of galactosyl-sugar metabolism in relation to rate of germination. Physiologia Plantarum 59: 387-392. Maraghni, M., M. Gorai and M. Neffati (2010) Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus. South African Journal of Botany 76: 453-459. Maxwell, K. and G. N. Johnson (2000) Chlorophyll fluorescence- a practical guide. Journal of Experimental Botany 51: 659-668. Miriti, M. N., S. Rodriguez-Buritica, S. J. Wright and H. F. Howe (2007) Episodic deathacross species of desert shrubs. Ecology 88: 32-36. Munne-Bosch, S and L. Alegre (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology 31: 203-216. Murphy, J. B, M. R. Rutter and M. F. Hammer (1992) Activity of sucrose synthase and soluble acid invertase following germination of pinyon (Pinus edulis) seeds. Canadian Journal of Forest Research 22: 442-446. Nicolas, M. E., R. J. Simpson, H. Lambers and M. J. Dalling (1985) Effects of drought on partitioning of nitrogen in two wheat varieties differing in differing in drought-tolerance. Annals of Botany 55: 743-754. Niedzwiedz-Siegien, I., R. Bogatek-Leszczynska, D. Come and F. Corbineau (2004) Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Science 167: 879-888. Niyogi, K. K. (2000) Safety valves for photosynthesis. Current Opinion in Plant Biology 3: 455-430. Nkang, A. (2002) Carbohydrate composition during seed development and germination in two sub-tropical rainforest tree species (Erythrina caffra and Guilfoylia monostylis). Journal of Plant Physiology 159: 473-483. Obendorf, R. L. (1997) Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Science Research 7: 63-74. Ober, E. S., M. L. Bloa, C. J. A. Clark, A. Royal, K. W. Jaggard and J. D. Pidgeon (2005) Evaluation of physiological traits as indirect selection criteria for drought tolerance in sugar beet. Field Crops Research 91: 231-249. Onillon, B., J. L. Durand, F. Gastal and R. Tournebize (1995) Drought effects on growth and carbon partitioning in a tall fescue sward grown at different rates of nitrogen fertilization. European Journal of Agronomy 4: 91-99. Ooms, J., J. A. Wilnier and C. M. Karssen (1994) Carbohydrates are not the sole factor determining desiccation tolerance in seeds of Arabidopsis thaliana. Physiologia Plantarum 90: 431-436. Orozco-Segovia, A., M. E. Sanchez-Coronado and C. Vazquez-Yanes (1993) Light environment and phytochrome-controlled germination in Piper auritum. Functional Ecology 7: 585-590. Pan, F. J., W. C. Shih and I. M. Chen (1991) Early growth performance of new Leucaena varieties on different habitats. Taiwan Journal of Forest Science 6: 27-33. Paoletti, F., D. Aldinucci, A. Mocali and A. Capparini (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Analytical Biochemistry 154: 536-541. Patterson, D.T., J. K. Westbrook, R. J. V. Joyce, P. D. Lingren and J. Rogasik (1999) Weeds, insects, and diseases. Climatic Change 43: 711-727. Patterson, T. B., R. D. Guy and Q. L. Dang (1997) Whole-plant nitrogen and water relations traits, and their associated trade-offs, in adjacent muskeg and upland boreal spruce species. Oecologia 110: 160-168. Pelleschi, S., J. P. Rocher and J. L. Prioul (1997) Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant, Cell and Environment 20: 493-503. Perez-Fernandez, M. A., B. Lamont, A. L. Marwick and W. G. Lamont (2000) Germination of seven exotic weeds and seven native species in south-western Australia under steady and fluctuating water supply. Acta Oecologica 21: 323-336. Peterbauer, T. and A. Richter (2001) Biochemistry and physiology of riffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research 11: 185-197. Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender and M. Stievenard (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429-436. Praxedes, S. C., F. M. DaMatta, M. E. Loureiro, M. A. G. Ferrao and A. T. Cordeiro (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environmental and Experimental Botany 56: 263-273. Pukacka, S. and E. Wojkiewicz (2002) Carbohydrate metabolism in Norway maple and sycamore seeds in relation to desiccation tolerance. Journal of Plant Physiology 159: 273-279. Pukacka, T, E. Ratajczak and E. Kalemba (2009) Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage. Journal of Plant Physiology 166: 1381-1390. Radin, J. W. and L. L. Parker (1979) Water relations in cotton plants under nitrogen deficiency I. Dependence upon leaf structure. Plant Physiology 64: 495-498. Richard-Molard, C., A. Krapp, F. Brun, B. Ney, F. Danie-Vedele and S. Chaillou (2008) Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. Journal of Experimental Botany 59: 779-791. Rodrigues, M. L., C. M. A. Pacheco and M. M. Chaves (1995) Soil – plant relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. Journal of Experimental Botany 46: 947-956. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig and J. A. Pounds (2003) Fingerprints of global warming on wild animals and plants. Nature 421: 57-60. Sales, N. M., F. Perez-Garcia and F. A. O. Silveira (2013) Consistent variation in seed germination across an environmental gradient in a Neotropical savanna. South African Journal of Botany 87: 129-133. Serraj, R. and T. R. Sinclair (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell and Environment 25: 333-341. Shi, J., H. Yasuor, U. Yermiyahu, Q. Zuo and A. Ben-Gal (2014) Dynamic response of wheat to drought and nitrogen stresses during re-wtering cycles. Agricultural Water Management 146: 163-172. Srivalli, B and K. C. Renu (1998) Drought-induced enhancement of protease activity during monocarpic senescence in wheat. Current Science 75: 1174-1176. Stoutjesdijk, P. (1972) A note on the spectral transmission of light by tropical rainforest. Acta Botanica Neerlandica 21: 346-350. Sun, W. Q. and A. C. Leopold (1994) Glassy state and seed storage stability: a viability equation analysis. Annal of Botany 74: 601-604. Tan, W. and G. D. Hogan (1997) Physiological and morphological responses to nitrogen limitation in jack pine seedling: potential implications for drought tolerance. New Forests 14: 19-31. Tardieu, F. and W. J. Davies (1993) Integration of hydraulic and chemical signaling in the control of stomatal conductance and water status of droughtd plants. Plant Cell and Environment 16: 341-349. Ter Steege, H., C, Bokdam, M. Boland, J. Dobbelsteen and I. Verburg (1994) The effects of man made gaps on germination, early survival, and morphology of Chlorocardium rodiei seedlings in Guyana. Journal of Tropical Ecology 10: 245-260. Thiele, A., G. H. Krause and K. Winter (1998) In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the tropical forest. Australian Journal of Plant Physiology 25: 189-195. Toorn, P. and B. D. Mckersie (1995) The high reducing sugar content during germination contributes to desiccation damage in lettuce (Lactuca sativa L.) radicles. Seed Science Research 5: 145-149. Tsai, F. A. and M. J. Chou (2006) Texture augmented analysis of high resolution satellite imagery in detecting invasive plant species. Journal of Chinese Institute of Engineers 29: 581-592. Valluru, R. and W. V. den Ende (2011) Myo-inositol and beyond-Emerging networks under stress. Plant Science 181: 387-400. Vazquez-Yanes, C. and H. Smith (1982) Phytochrome control of seed germination in the tropical rain forest pioneer trees Cecropia obtusifolia and Piper auritum and its ecological significance. New Phytologist 92: 477-485. Verdu, M. and A. Traveset (2005) Early emergence enhances plant fitness: phylogenetically controlled meta-analysis. Ecology 86: 1385-1394. Walters, C., J. M. Farrant, N. W. Pammenter and P. Berjak (2002) Desiccation stress and damage, in: M. Black, H.W. Pritchard (Eds.), Desiccation and Survival in Plants. Drying without Dying, CAB International, Oxon, pp. 263–291. Wang, W. Q., I. M. Moller and S. Q. Song (2012) Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. Journal of Proteomics 77: 68-86. Wettlaufer, S. H. and A. C. Leopold (1991) Relevance of Amadori and Maillard products to seed deterioration. Plant Physiology 97: 165-169. Whittaker, A., A. Bochicchio, C. Vazzana, C. Lindsey and J. Farrant (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. Journal of Experimental Botany 52: 961-969. Wright, I. J., M. Westoby and P. B. Reich (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology 90: 534-543. Wu, F., W. Bao, F. Li and N. Wu (2008) Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmental and Experimental 63: 248-255. Xu, S. M., L. X. Liu, K. C. Woo and D. L. Wang (2007) Changes in photosynthesis, xanthophyll cycle, and sugar accumulation in two North Australia tropical species differing in leaf angles. Photosynthetica 45: 348-354. Yadav, R. S., R. L. Sharwa and U. K. Pandey (1998) Effects of various water potential treatment on nitrogen reductase activity in wheat genotypes. Agricultural Science Digest 18: 73-75. Yang, Y. G. Wang, L. Yang and J. Guo (2013) Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Ables fabri in Eastern Tibetan Plateau. Journal of Plant Growth Regulation 32: 298-306. Zhou, S., R. A. Duursma and B. E. Medlyn (2013) Hoe should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agricultural and Forest Meteorology 182: 204-214. Zhou, Z., P. Su, L. Gonzalez-Paleo, T. Xie, S. Li and H. Zhang (2014) Trade-off between leaf turnover and biochemical responses related to drought tolerance in desert woody plants. Journal of Arid Environments 103: 107-113.
摘要: 
本試驗主要比較夏威夷型銀合歡 (Leucaena leucocephala Lam.) 及相思樹 (Acacia confusa Merr.)、水黃皮 (Pongamia pinnata L.)、草海桐 (Scaevola hainanensis Hance)、欖仁 (Terminalia catappa L.) 及茄苳 (Bischofia javanica Blume) 等五種原生樹種苗木的耐旱能力,以瞭解乾旱是否會增加夏威夷型銀合歡植群的擴展能力。試驗結果顯示,植株氮含量會影響植物在乾旱環境的形態調適作用及生理生化反應,葉片氮含量最低的欖仁及茄苳在偏乾燥 (土壤水勢-0.32 ~ -0.99 MPa) 及乾燥土壤環境 (土壤水勢-1.26 ~ -1.88 MPa),其偏向維持葉片生長以保留養分及增加養分利用率,並同時誘導SOD、POD及CAT等抗氧化酵素活性升高及非光化學消散作用增加以提高光保護作用減緩細胞傷害,且由於植株必須將光合同化產物投資於光保護作用上,導致根重、莖重及全株淨生長量明顯低於夏威夷型銀合歡、相思樹及水黃皮等不偏向維持葉片生長的樹種。全株氮含量低的草海桐、欖仁及茄苳在乾燥土壤生長105天後,氮含量也會傾向分配於莖部及根部,導致全株碳氮比顯著降低,並伴隨著較低的全株相對淨生長量,顯示氮含量低的植物不適合生長在長期乾旱環境。六試驗樹種中,夏威夷型銀合歡及其常見的伴生種相思樹的耐旱能力最高,夏威夷型銀合歡苗木在30天短期的偏乾燥及乾燥環境,其剛成熟葉片的光合速率不受影響且細胞膜滲漏率沒有顯著增加,而相思樹葉片細胞已受傷害,但生長速率較慢的相思樹苗木反而更能耐受105天長期偏乾燥及乾燥環境,其全株相對淨生長量顯著高於夏威夷型銀合歡。進一步比較二樹種種子發芽階段的耐乾燥能力,發現夏威夷型銀合歡及相思樹種子胚根突破種皮後,種子從耐乾燥轉變成不耐乾燥,此耐乾燥能力的轉變與發芽後胚軸內蔗糖與棉子糖含量的比值及單醣與棉子糖含量的比值大幅度增加有關,顯示發芽後種子耐乾燥能力喪失導因於棉仔糖含量降低與蔗糖及單醣含量維持或些微增加的共同作用所致,且已發芽的夏威夷型銀合歡種子對不同乾燥程度的耐受能力普遍高於伴生樹種相思樹,顯示在乾旱環境下,夏威夷型銀合歡較相思樹更具植群擴展優勢性。

This study compared the desiccation tolerance of exotic Leucaena leucocephala Lam. and indigenous Acacia confusa Merr., Pongamia pinnata L., Scaevola hainanensis Hance, Terminalia catappa L. and Bischofia javanica Blume. The desiccation tolerance of seedlings is crucial for growth and colonization of species under the increasing trend of extreme rainfall frequency and the yearly non-rainy day in Taiwan. The result indicated that nitrogen limitation influenced the morphological, physiological and biochemical performance in response to desiccation stress. T. catappa and B. javanica with lowest nitrogen content in leaf showed a longer leaf life span (plants maintained the leaf mass ratio and leaf area ratio) under experimental drought conditions in comparison with nitrogen-fixing species (L. leucocephala, A. confusa and P. pinnata). The morphological adjustment difference related to leaf-longevity also reflected in their photo-protective mechanism. T. catappa and B. javanica induced superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) antioxidant enzyme activity and increased non-photochemical quenching under moderate (soil water potential 0.32 ~ -0.99 MPa) and serious (-1.26 ~ -1.88 MPa) dry soil in contrast to the decrease of photo-protective mechanism of species with a shorter leaf life-span (L. leucocephala, A. confusa and P. pinnata). The trade-off between leaf turnover and biochemical influenced the allocation of biomass. T. catappa and B. javanica with longer leaf life span had the significantly lower root, stem and whole plant biomass than species with a shorter leaf life-span (L. leucocephala, A. confusa and P. pinnata) under serious dry soil after long term period (105 days). Moreover, species with lower whole-plant nitrogen content (S. hainanensis, T. catappa and B. javanica) prefer allocation of nitrogen to root and stem rather than to leaf, and it coincided with the lower C/N ratio and whole plant biomass under serious dry soil than species with higher whole-plant nitrogen content (L. leucocephala, A. confusa and P. pinnata). Therefore, species with low nitrogen content are not suitable for growth in long term dry soil. In the seedling stage, L. leucocephala and its common indigenous congener A. confusa was most desiccation-tolerant among six experimental species in long term dry environment (soil water potential -0.32~ -1.88 MPa). In order to compare further the ability of L. leucoephala and A. confuse to colonize habitats in dry soil, we investigated the desiccation tolerance of imbibed seeds of both species. The result indicated that embryonic axis protruded from L. leucocephala and A. confusa seed coats in coincidence with the transition from desiccation tolerance to intolerance.
The loss of desiccation tolerance in the embryonic axis of L. leucocephala and A. confusa upon the protrusion of embryonic axis was resulted from the degradation of raffinose and the slight increase of sucrose and monosaccharides. Moreover, seeds of L. leucocephala were more tolerant to desiccation than A. confusa after the protrusion of embryonic axis at various moisture contents. The result suggested that in the germinated stage L. leucocephala with superior desiccation tolerance will gain an advantage over their indigenous congener A. confusa for setting up population.
URI: http://hdl.handle.net/11455/89279
其他識別: U0005-0402201510481600
Rights: 同意授權瀏覽/列印電子全文服務,2016-02-05起公開。
Appears in Collections:森林學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-8097033101-1.pdf1.47 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.