Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89296
DC FieldValueLanguage
dc.contributor李文昭zh_TW
dc.contributor.authorYu Wuen_US
dc.contributor.author吳伃zh_TW
dc.contributor.other森林學系所zh_TW
dc.date2014zh_TW
dc.date.accessioned2015-12-07T07:04:45Z-
dc.identifierU0005-1707201510243100zh_TW
dc.identifier.citation1. 尤昭云 (2008) 液化木質材料製造聚胺基甲酸醋樹脂及其醇解回收再利用。國 立中興大學森林學系碩士學位論文。pp. 26-31。 2. 尤昭云、李文昭 (2006) 多元醇液化柳杉材及其在PU發泡體之應用。林產工業25 (2):143-158。 3. 尤昭云、李文昭 (2009) 聚乙二醇/丙三醇共溶劑液化麻竹及桂竹製造PU發泡體。中華林學季刊 42 (4):609-621。 4. 王松水、丁昭義 (1984) 林產學上冊。臺灣商務印書館股份有限公司。臺北。pp. 34-35。 5. 吳季玲、張上鎮 (2010) TGA與FTIR分析腐朽木材之化學結構變化。中華林學季刊 43 (1):147-155。 6. 吳曉旋、吳秋昌、李文昭 (2008) 界面活性劑種類及添加量對多元醇液化柳杉製造聚胺基甲酸醋(PU)發泡體之影響。林業研究季刊 30 (4):65-70。 7. 李文昭 (1998) 溶解相思樹樹皮製造木材膠合劑之研究。林產工業 17 (4):681-696。 8. 李文昭、林孟萱 (2009) 多元醇液化木材製作聚胺基甲酸醋薄膜之力學性質。林產工業 28 (3):167-176。 9. 李文昭、張嘉方 (2004a) 多元醇液化杉木在聚胺醋發泡體製造之應用。中華 林學季刊 37 (1):111-119。 10. 李文昭、張嘉方 (2004b) 多元醇液化相思樹在聚胺基甲酸醋發泡體製造之應 用。林產工業 23 (3):239-248。 11. 李文昭、劉正字 (2001) 液化杉木樹皮製造酌-甲睦木材膠合劑。林產工業 20(3):217-226。 12. 李文昭、劉正字、侯家翔 (2004) 液化相思樹木材製備酌甲睦樹脂膠合劑。林產工業 23 (1):43-53。 13. 阮幼梅 (2007) 多元醇液化柳杉應用於聚胺基甲酸酪樹脂發泡體及彈性體製 造之研究。國立中興大學森林學系碩士學位論文。pp. 55-59。 14. 阮幼梅、李文昭 (2007) 柳杉心材及邊材之多元醇液化及其在硬質PU發泡體製造之應用。中華林學季刊 40 (3):417-431。 15. 阮幼梅、李文昭 (2009) 多元醇液化柳杉木材及樹皮之性質及其在硬質PU發泡體製造之應用。中華林學季刊 42 (1):137-150。 16. 林瑋妹、李文昭、曾益氏、徐聞全 (2014) 不同酌原料製備水溶性酌睦樹脂之硬化性及膠合性能。林業研究季刊 36 (2):149-160。 17. 胡銘珊 (2013) 多元醇液化木質素應用於水性聚胺基甲酸酪樹脂及有機-無機 混成材料之製備。國立中興大學森林學系碩士學位論文。pp. 42-43。 18. 高毓斌 (2011) 液化柳杉為基質PU樹脂/奈米矽氧有機-無機混成材料之製備 及性質。國立中興大學森林學系碩士學位論文。pp. 83-84。 19. 高毓斌、吳秋昌、張國峻、李文昭 (2009) 酌液化相思樹-甲睦製備Novolak型酌樹脂之反應特性及其所製造成型板之性質。中華林學季刊 42 (3):421-433。 20. 高毓斌、李文昭 (2011) 多元醇液化柳杉為基質PU樹脂之薄膜性質及填縫膠合性能。林業研究季刊 33 (3):79-90。 21. 陳文照、曾春風、游信和 譯著(1999) 材料科學工程。高立圖書有限公司。臺 北。pp. 798-801。 22. 陳奕君、李文昭、劉正字 (2006) 酌液化孟宗竹材製造Resol型水溶性PF樹脂。林產工業 25 (3):249-258。 23. 陳嘉明 (2000) 生物質木材膠合劑。國立編譯館。臺北。pp. 1-3。 24. 賀孝雍 譯著 (1989) 有機化合物之光譜鑑別法。眾光文化事業有限公司。臺 北。pp. 95-180。 25. 黃建穎、胡巧玲、方征平 (2002) 聚腿和聚臨型水性聚氧臨胶粘剂的制备及性能比较。胶体勾聚合物 20 (3):7-9。 26. 趙中譽、張國峻、李文昭 (2008) 甲陸與酌液化柳杉調配比對其所製備Novolak型PF樹脂及成型板性質之影響。林產工業 27 (4):259-269。 27. 歐志助 (2003) 液化木材製造酌樹脂及其應用。國立中興大學森林學系碩士學 位論文。pp. 28-29。 28. 潘俊宏 (2005) 奈米水性PU之研究。國立臺北科技大學有機高分子研究所碩士 學位論文。pp. 2-7。 29. 謝漢氏、張國峻、許玲瑛、李文昭 (2010) 以酌液化相思樹為基質Novolak型酌甲陸樹脂含浸木粉製造成型板性質之研究。林業研究季刊 32 (4):61-70。 30. 簡仁德、楊子毅、張柳春 譯著 (2008) 材料科學與工程。學銘圖書有限公司。 臺北。pp. 183-214。 31. Abouzahr, S. and G.L. Wilkes (1984) Structure property studies of polyester- and polyether-based MDI-BD segmented polyurethanes: effect of one- vs. two-stage polymerization conditions. J. Appl. Polym. Sci. 29: 2695-2711. 32. Alma, M.H. and M.A. Basturk (2006) Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol-formaldehyde type adhesive. Ind. Crops Prod. 24: 171-176. 33. Anand, A., R.D. Kulkarni and V.V. Gite (2012) Preparation and properties of eco-friendly two pack PU coatings based on renewable source (sorbitol) and its property improvement by nano ZnO. Prog. Org. Coat. 74: 764-767. 34. Apell, H.R., Y.C. Fu, E.G. Illig, F.W. Steffgen and R.D Miller (1971) Conversion of cellulosic waste to oil. Bureau of mines report of investigations. Pittsburgh Energy Research Center, Pittsburgh. 35. Awasthi, S. and D. Agarwal (2010) Preparation and characterization of polyurethane coatings based on polyester polyol. Pigm. Resin Technol. 39: 208-213. 36. Cao, X., L.J. Lee, T. Widya and C. Macosko (2005) Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46: 775-783. 37. Cao, X., L. Zhang, G. Yang, J. Huang and Y. Wang (2003) Structure-properties relationship of starch/waterborne polyurethane composites. J. Appl. Polym. Sci. 90: 3325-3332. 38. Chattopadhyay, D.K. and K.V.S.N. Raju (2007) Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 32: 352-418. 39. Chen, F. and Z. Lu (2009) Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. J. Appl. Polym. Sci. 111: 508-516. 40. Chen, F.G., B. Tu and Z.M. Lu (2003) Analysis on constituents of liquefied products from wheat straw. Chem. Ind. Forest Prod. 23: 78-82. 41. Enns, J.B. and J.K. Gillham (1983) Time-temperature-transformation (TTT) cure diagram: modeling the cure behavior of thermosets. J. Appl. Polym. Sci. 28: 2567-2591. 42. Fabris, H.J. (1976) Thermal and oxidative stability of urethanes. Adv. Urethane Sci. Tec. 4: 891-911. 43. Fang, Z., M. Zhou, J.F. Zhong, Y.C. Qi, L.L. Li and Q.Z. Dong (2013) Preparation and properties of novel ultraviolet-cured waterborne polyurethanes. High Perform. Polym. 25: 668-676. 44. Fierz-David, H.E. (1925) The liquefaction of wood and some general remarks on the liquefaction of coal. Chem. Ind. 44: 942-944. 45. Figueroa, C., L.L. Schaleger and H.G. Davis (1982) LBL continuous bench-scale liquefaction unit, operation and results. Sixth annual conference on energy from biomass wastes, Lake Buena Vista, Florida: 1097-1112. 46. Gite, V.V. and A.B. Chaudhari (2013) Incorporation of modified nano montmorillonite (MMT) in polyurethane coatings based on acrylic copolymer and trimer of isophorone. Mater. Sci. Forum. 757: 99-109. 47. Gite, V.V., P.P. Mahulikar and D.G. Hundiwale (2010) Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate. Prog. Org. Coat. 68: 307-312. 48. Goudriaan, F. and D.G.R. Peferoen (1990) Liquid fuels from biomass via a hydrothermal process. Chem. Eng. Sci. 45: 2729-2734. 49. Guo, Y. and R.M. Bustin (1998) FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: Implications for studies of inertinite in coals. Int. J. Coal Geol. 37: 29-53. 50. Hassan, E.B., M. Kim and H. Wan (2009) Phenol-formaldehyde-type resins made from phenol-liquefied wood for the bonding of particleboard. J. Appl. Polym. Sci. 112: 1436-1443. 51. Hatchett, D.W., G. Kodippili, J.M. Kinyanjui, F. Benincasa and L. Sapochak (2005) FTIR analysis of thermally processed PU foam. Polym. Degrad. Stab. 87: 555-561. 52. Hubbert, M.K. (1956) Nuclear energy and the fossil fuels. Drilling and production practice. American petroleum institute. 53. Jalili, M.M., S. Moradian, H. Dastmalchian and A. Karbasi (2007) Investigating the variations in properties of 2-pack polyurethane clear coat through separate incorporation of hydrophilic and hydrophobic nano-silica. Prog. Org. Coat. 59: 81-87. 54. Jasiukaitytė, E., M. Kunaver and M. Strlič (2009) Cellulose liquefaction in acidified ethylene glycol. Cellulose 16: 393-405. 55. Juhaida, M.F., M.T. Paridah, M.M. Hilmi, Z. Sarani, H. Jalaluddin and A.R. Mohamad-Zaki (2010) Liquefaction of kenaf (Hibiscus cannabinus L.) core for wood laminating adhesive. Bioresour. Technol. 101: 1355-1360. 56. Kobayashi, M., T. Asano, M. Kajiyama and B. Tomita (2004) Analysis on residue formation during wood liquefaction with polyhydric alcohol. Jpn. Sci. Ind. Res. 50: 407-414. 57. Kotilainen, R.A., T.J. Toivanen and R.J. Alén (2000) FTIR monitoring of chemical changes in softwood during heating. J. Wood Chem. Technol. 20: 307-320. 58. Kunaver, M., E. Jasiukaityte, N. Čuk and J.T. Guthrie (2010) Liquefaction of wood, synthesis and characterization of liquefied wood polyester derivatives. J. Appl. Polym. Sci. 115: 1265-1271. 59. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour. Technol. 74: 151-157. 60. Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour. Technol. 77: 33-40. 61. Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53: 617-622. 62. Lee, W.J. and M.S. Lin (2008) Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. J. Appl. Polym. Sci. 109: 23-31. 63. Lee, W.J. and Y.C. Chen (2008) Novolak PF resins prepared from phenol liquefied Cryptomeria japonica and used in manufacturing moldings. Bioresour. Technol. 99: 7247-7254. 64. Lee, D.K., H.B. Tsai, R.S. Tsai and P.H. Chen (2007) Preparation and properties of transparent thermoplastic segmented polyurethanes derived from different polyols. Polym. Eng. Sci. 47: 659-701. 65. Lee, S.H., M. Yoshioka and N. Shiraishi (2000) Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. J. Appl. Polym. Sci. 78: 319-325. 66. Lee, S.H., Y. Teramoto and N. Shiraishi (2002) Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J. Appl. Polym. Sci. 83: 1482-1489. 67. Lee, Y.Y., W.J. Lee, L.Y. Hsu and H.M. Hsieh (2014) Properties of molding plates made with various matrices impregnated with PF and liquefied wood-based PF resins. Holzforschung 68: 37-43. 68. Lei, C., X.Y. Lu, L. He, X. Liu and Q.L. Ren (2004) The development of chemistry and applications of levulinic acid a new platform chemical. Chem. Ind. 18: 1-4. 69. Leng, Y., Y. Zhang, X. Chen, C. Yi, B. Fan and Q. Wu (2011) Hydrophobic thermoplastic starches modified with polyester-based polyurethane microparticles: effects of various diisocyanates. Ind. Eng. Chem. Res. 50: 11130-11135. 70. Liu, Y., R. Ruan, X. Lin, F. Yu, P. Chen, S. Deng, Y. Li, V. Morey and T. Yang (2005) Preparation of biopolymers from liquefied corn stover. Trans. CSAE 21: 116-120. 71. Lu, Y., L. Tighzert, P. Dole and D. Erre (2005) Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources.Polymer 46: 9863-9870. 72. Nakajima-Kambe, T., Y. Shigeno-Akutsu, N. Nomura, F. Onuma and T. Nakahara (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biotechnol. 51: 134-140. 73. Oliveira, M.C.L., R.A. Antunes and I. Costa (2013) Effect of the NCO/OH molar ratio on the physical aging and on the electrochemical behavior of polyurethane-urea hybrid coatings. Int. J. Electrochem. Sci. 8: 4679-4689. 74. Pan, H., T.F. Shupe and C.Y. Hse (2008) Synthesis and cure kinetics of liquefied wood/phenol/formaldehyde resins. J. Appl. Polym. Sci. 108: 1837-1844. 75. Pan, H., T.F. Shupe and C.Y. Hse (2009) Characterization of novolac type liquefied wood/phenol/formaldehyde (LWPF) resin. J. Appl. Polym. Sci. 67: 427-437. 76. Pereira, A.P.V., W.L. Vasconcelos and R.L. Orefice (2000) Novel multicomponent silicate-poly(vinyl alcohol) hybrids with controlled reactivity. J. Non-Cryst. Solids 273: 180-185. 77. Petrovic, Z.S., Z. Zavarago and J.H. Flynn (1994) Thermal degradation of segmented polyurethanes. J. Appl. Polym. Sci. 51: 1087-1095. 78. Ravey, M. and E.M. Pearce (1997) Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. J. Appl. Polym. Sci. 63: 47-74. 79. Rezzoug, S.A. and R. Capart (2002) Liquefaction of wood in two successive steps: solvolysis in ethylene-glycol and catalytic hydrotreatment. Appl. Energ. 72:631-644. 80. Rezzoug, S.A. and R. Capart (2003) Assessment of wood liquefaction in acidified ethylene glycol using experimental design methodology. Energ. Convers. Manage. 44: 781-792. 81. Shiraishi, N., K. Shirakawa and Y. Kurimoto (1992) Liquefying lignocellulose substances with polyhydric alcohol. Japanese Pat. Appl.: 106128. 82. Wang, H. and H.Z. Chen (2007) A novel method of utilizing the biomass resource: rapid liquefaction of wheat straw and preparation of biodegradable polyurethane foam (PUF). J. Chin. Inst. Chem. Eng. 38: 95-102. 83. Wei, Y., F. Cheng, H. Li and J. Yu (2005a) Properties and microstructure of polyurethane resins from liquefied wood. J. Appl. Polym. Sci. 95: 1175-1180. 84. Wei, Y., F. Cheng, H. Li and J. Yu (2005b) Thermal proporties and micromorphology of polyurethane resins based on liquefied benzylated wood. J. Sci. Ind. Res. 64: 435-439. 85. Wei, Y., F. Cheng, H. Li, and J. Yu (2004) Synthesis and properties of polyurethane resins based on liquefied wood. J. Appl. Polym. Sci. 92: 351-356. 86. Yamada, T. and H. Ono (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresour. Technol. 70: 61-67. 87. Yamada, T. and H. Ono (2001) Characterization of the products resulting from ethylene glycol liquefaction of cellulose. Jpn. Sci. Ind. Res. 47: 458-464. 88. Yamada, T., H. Ono, S. Ohara and A. Yamaguchi (1996) Characterization of the products resulting from direct liquefaction of cellulose I. Identification of intermediates and the relevant mechanism in direct phenol liquefaction of cellulose in the presence of water. Jpn. Sci. Ind. Res. 42: 1098-1104. 89. Yamada, T., M. Aratani, S. Kubo and H. Ono (2007) Chemical analysis of the product in acid-catalyzed solvolysis of celluloseusing polyethylene glycol and ethylene carbonate. Jpn. Sci. Ind. Res. 53: 487-493. 90. Yamada, T., S. Ohara, A. Kato and H. Ono (1995) Behavior of cellulose during liquefaction of wood (3). Abstract of the 40th anniversary conference of the JWRS: 289 (in Japanese). 91. Yamada, T., Y.H. Hu and H. Ono (2001) Condensation reaction of degraded lignocellulose during wood liquefaction in the presence of polyhydric alcohols. J. Adhes. Soc. Jpn. 37: 471-478. 92. Yamazaki, J., E. Minami and S. Saka (2006) Liquefaction of beech wood in various supercritical alcohols. J. Wood Sci. 52: 527-532. 93. Yao Y., M. Yoshioka and N. Shiraishi (1996) Water-absorbing polyurethane foams from liquefied starch. J. Appl. Polym. Sci. 60: 1939-1949. 94. Yoo, S., H.S. Lee and S.W. Seo (1997) Orientation and phase separated structure of polyurethanes having various chemical structures. Pollimo 21: 459-467. 95. Yu, F., Y. Liu, X. Pan, X. Lin, C. Liu, C. Chen and R. Ruan (2006) Liquefaction of corn stover and preparation of polyester from the liquefied polyol. Appl. Biochem. Biotech. 129-132: 574-585. 96. Yu, H., Q. Ranba, S. Wu and J. Shen (2008) Structure and property of PU/MMT nanocomposites by in-situ polymerization. Polym.-Plast. Technol. Eng. 47: 619-622. 97. Yu, S.G. (1982) Solvolytic liquefaction of wood under mild conditions. Ph.D. Thesis, University of California, Berkeley. 98. Zhang, C. and S. Feng (2004) Effect of glycols on the properties of polyester polyols and of room-temperature-curable casting polyurethanes. Polym. Int. 53: 1936-1940. 99. Zhang, J., W. Tu and Z. Dai (2012) Synthesis and characterization of transparent and high impact resistance polyurethane coatings based on polyester polyols and isocyanate trimers. Prog. Org. Coat. 75: 579- 583. 100. Zhang, L. and J. Huang (2001) Effects of nitrolignin on mechanical properties of polyurethane-nitrolignin films. J. Appl. Polym. Sci. 80: 1213-1219. 101. Zhang, T., Y. Zhou, D. Liu and L. Petrus (2007) Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresour. Technol. 98: 1454-1459. 102. Zhang, Y., A. Ikeda, N. Hori, A. Takemura, H. Ono and T. Yamada (2006) Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid. Bioresour. Technol. 97: 313-321. 103. Zou, X., T. Qin, L. Huang, X. Zhang, Z. Yang and Y. Wang (2009) Mechanisms and main regularities of biomass liquefaction with alcoholic solvents. Energ. Fuel 23: 5213-5218.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/89296-
dc.description.abstract本研究將相思樹(Acacia confusa; Taiwan acacia)木粉以不同重量比之乙二醇 (Ethylene glycol; EG)/碳酸乙烯酯(Ethylene carbonate; EC)混合液為液化藥劑,硫酸 為催化劑,於 150oC 加熱 60 min 進行液化處理,並將此液化木材(liquefied woods; LW)與重量比 8/2 之已二酸(Adipic acid)/鄰萃二甲酸酐(Phthalic anhydride)混合酸反 應,在 OH/COOH 官能基莫耳比 1.6、1.8 及 2.0 條件下合成醇酸樹脂(Alkyd resins) 做為醇酸系多元醇,進一步則將此醇酸樹脂與異氰酸酯Desmodur N 及 Desmodur L 反應,依 NCO/OH 官能基莫耳比 1.2、1.5 及 1.8 製作聚胺基甲酸醋樹脂(Polyurethane resins; PU)。由試驗結果可知,EG/EC 混合液可應用於木材之液化處理,其中以 EG/EC 重量比 5/5 之混合液有較佳之液化效果﹔液化殘渣之 TGA 分析顯示液化過 程木質素較易被分解溶出。 液化木材與二鹽基酸反應製備醇酸樹脂時採用 OH/COOH 官能基莫耳比 1.6 者,其反應所需時間較長,合成樹脂之黏度較高、平 均分子量較大﹔DSC 分析顯示,各條件醇酸樹脂與異氰酸酯 Desmodur N 所進行之 架橋反應程度大於 Desmodur L﹔三種 OH/COOH 官能基莫耳比之醇酸樹脂比較, 其中以莫耳比 2.0 達高分子化所需能量較高﹔不同液化藥劑比較,單獨以 EG 及 EC 為液化藥劑所合成之醇酸樹脂 LW-EG 及 LW-EC 與異氯酸醋之反應性較大。 不同條件醇酸樹脂應用於 PU 樹脂薄膜之製作時,以 Desmodur N 為異氰酸酯樹脂 原料者,其 PU 樹脂薄膜之性質軟韌,以 Desmodur L 為原料者則較硬脆,提高 NCO/OH 官能基莫耳比可提升薄膜拉伸強度,採用 OH/COOH 官能基莫耳比較小 之醇酸樹脂者,其拉仲破壞伸長率較大﹔DMA 熱分析顯示以 Desmodur N 為原料 者,其相轉移現象發生在較低溫﹔TGA 分析顯示以 Desmodur N 為異氰酸酯樹脂 原料者或 NCO/OH 官能基莫耳比較大者,其 PU 樹脂薄膜之耐熱性較佳。zh_TW
dc.description.abstractIn this study, Acacia confusa (Taiwan acacia) wood powders were liquefied in the mixture of ethylene glycol (EG)/ethylene carbonate (EC) with different weight ratios. H2SO4 was used as the catalyst and the liquefaction was undergone at 150oC for 60 min. The liquefied woods (LW) were then used as raw materials to react with adipic acid/phthalic anhydride (8/2; w/w) for synthesizing alkyd resins as alkyd polyols with the OH/COOH molar ratios of 1.6, 1.8 and 2.0. Furthermore, these alkyd resins were mixed with isocyanates (Desmodur N and Desmodur L) by the NCO/OH molar ratios of 1.2, 1.5 and 1.8 to prepare polyurethane resins (PU). The results show that the mixture of EG/EC could be used as a reagent for wood liquefying. Using the weight ratio of EG/EC as 5/5 had the better effect for liquefaction. TGA for unliquefied wood residues shows that lignin was more easily to be decomposition and dissolved than other components during liquefaction. The alkyd resins prepared with the OH/COOH molar ratio of 1.6 needed longer reaction time, and the prepared resin had higher viscosity and larger average molecular weight. DSC thermo-analysis shows that alkyd resins reacted with Desmodur N appeard more cross-linking reaction than that with Desmodur L. Comparison between alkyd resins with different OH/COOH molar ratios, the one prepared with the molar ratio of 2.0 needed more energy to accomplish the polymerization. Comparison between the liquefied reagents, LW-EG and LW-EC, the alkyd resins prepared with EG and EC liquefied wood, had higher reactivity than others. PU films that prepared by mixing alkyd resins with Desmodur N had the behavior of more flexibility, but it was stiffness for that with Desmodur L. PU films made with a larger NCO/OH molar ratio had higher tensile strength. On the other hand, alkyd resin prepared with a less OH/COOH molar ratio led the PU film having a larger breaking elongation. DMA thermo-analysis showed that Desmodur N-based PU films had a phase transfer occured at lower temperature. TGA showed that PU films prepared with Desmodur N as the raw material of isocyanate or with higher NCO/OH molar ratio both had a superior heat-resistance.en_US
dc.description.tableofcontents摘要 i Summary ii 目錄 iv 表目次 vii 圓目次 xi 第一章 前言 1 第二章 文獻回顧 3 一、PU 樹脂簡介 3 二、生質物液化機制 7 三、液化生質物應用於合成樹脂 12 第三章 乙二醇/碳酸乙坤酪液化相思樹木材之性質 15 一、材料與方法 15 (一) 試驗材料 15 (二) 相思樹木粉之液化處理 15 (三) 液化產物性質測定 16 (四) 液化殘渣性質分析 17 二、結果與討論 18 (一) 不同處理條件液化產物之性質 18 (二) 液化殘渣之 FT-IR 23 (三) 液化殘渣之熱重分析 27 (四) 夜化殘渣之顯微結構觀測 32 第四章 夜化木材為基質醇酸樹脂合成及其與異氧酸醋之反應性 ..........................34 一、材料與方法 34 (一) 試驗材料 34 (二) 醇酸樹脂之合成 34 (三) 醇酸樹脂之性質測定 35 (四) 醇酸樹脂與異氧酸醋反應性分析 36 二、結果與討論 37 (一) 不同條件醇酸樹脂反應過程之酸價變化 37 (二) 不同條件醇酸樹脂之性質 38 (三) 不同條件醇酸樹脂與異氧酸醋之反應性分析 42 第五章 醇酸系多元醇製作 PU 樹脂薄膜及其性質 49 一、材料與方法 49 (一) 試驗材料 49 (二) PU 樹脂調配 49 (三) PU 樹脂薄膜製作 49 (四) PU 樹脂薄膜性質測定 50 二、結果與討論 52 (一) PU 樹脂外觀 52 (二) PU 樹脂之 FT-IR 53 (三) PU 樹脂之物理性質 57 (四) PU 樹脂之機械性質 60 (五) PU 樹脂之 DMA 動態熱分析 69 (六) PU 樹脂之 TGA 熱分析 80 第六章 結論 92 參考文獻 94zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2016-07-27起公開。zh_TW
dc.subject相思樹zh_TW
dc.subject醇酸樹脂zh_TW
dc.subject碳酸乙烯酯zh_TW
dc.subject乙二醇zh_TW
dc.subject液化木材zh_TW
dc.subject聚胺基甲酸酯樹脂zh_TW
dc.subjectAcacia confusaen_US
dc.subjectAlkyd resinsen_US
dc.subjectEthylene carbonateen_US
dc.subjectEthylene glycolen_US
dc.subjectLiquefied wooden_US
dc.subjectPolyurethane resinsen_US
dc.titleProperties of Polyurethane Resins Prepared from Liquefied Acacia confusa-based Alkyd Polyolen_US
dc.title液化相思樹為基質醇酸系多元醇製作聚胺基甲酸酯樹脂之性質zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2015-07-27zh_TW
dc.date.openaccess2016-07-27-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:森林學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101033032-1.pdf12.33 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.