Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89300
標題: Study on the arbuscular mycorrhizal fungi community of Cinnamomum kanehirae Hayata and inoculation of cuttings
牛樟生育地叢枝菌根菌群落及 扦插苗接種對生長之研究
作者: Po-Shun Chang Liao
張廖伯勳
關鍵字: 牛樟;扦插苗;叢枝菌根菌;菌根群落;矩陣群團分析;主成 份分析;冗餘分析;Cinnamomum kanehirae;cuttings;arbuscular mycorrhizal fungi;matrix cluster analysis;principle component analysis;redundancy analysis
引用: 弓明欽 、陳應龍、仲崇祿 (1997) 菌根研究及應用。中國林業出版社。共 223 頁。 王敬、李賢偉、榮麗、李德會、謝娟 (2008) 森林土壤氮貯量及氮素輸入 過程研究進展。世界林業研究 21(1): 14-19。 白創文、邱志郁、王光明 (2005) 酸化森林土壤中的鋁及其植物毒性。台 灣林業 31(6): 22-28。 呂斯文、張喜寧 (1993) 利用濾膜表面發芽法進行繡球屬與大孢子屬孢子 發芽生理試驗。中菌會刊 8(3): 1-199。 呂勝由、林志明 (1996) 臺灣稀有及瀕危植物之分及彩色圖鑑 (I)。行政院 農業委員會。共 163 頁。 何政坤、張淑華 (2012) 牛樟育種、繁殖與造林。林業研究專訊 19(4): 29-38。 吳繼光、林素楨 (1998) 囊叢枝內生菌根菌應用技術手冊。臺灣省農業試 驗所。共 232 頁。 李曉林、馮固 (2001) 叢枝菌根生態生理。華文出版社。北京。358 頁。 林子超、吳繼光 (2007) 九二一地震後九九峰地區先驅樹種內生菌根菌調 查研究。特有生物研究 9(1): 51-62。 林伯年、堀內昭作、沈德緒 (1994) 園藝植物繁育學。上海科學技術出版 社。上海。 林耿安 (2003) 觀霧地區不桐海拔臺灣赤楊根瘤固氮效率與叢枝菌根菌型 態之研究。國立中興大學森林研究所碩士論文。共 88 頁。 林晉卿、黃瑞彰、林經偉 (2002) 堆肥品質及其應用於介質之調製。行政 院農委會台南區農業專訊 40: 6-11。 林素楨 (1998) 臺灣囊叢枝內生菌根菌之生態與其應用之研究。國立台灣 大學農業化學研究所博士論文。共 165 頁。 林鴻忠 (1997) 牛樟採穗園之建造與苗木繁植。牛樟生物學及育林技術研 討會論文集。臺灣省林業試驗所。75-77 頁。 林讚標 (1993) 牛樟與冇樟。林業試驗所研究報告季刊 8(1): 11-20。 胡弘道 (1988) 森林土壤學。國立編譯館。共 402 頁。 胡弘道 (1990) 林木菌根。千華出版公司。共 666 頁。 高毓斌、黃松根 (1993) 牛樟之扦插繁殖。林業試驗所研究報告季刊 8(4): 371-388。 施欣慧、陳永修、蔡佳彬、林怡君 (2012) 炭疽病對牛樟育苗及造林初期 之影響。林業研究專訊 19(4): 43-44。 郭幸榮 (2007) 育林手冊。行政院農業委員會林務局。110-116 頁。 郭珆女勻 (2013) 中海拔菜園回收地土壤性質與菌根苗木生長之研究。國立 中興大學森林研究所碩士論文。共 49 頁。 張東林、束永志、陳薇 (2003) 園林苗圃育苗手冊。中國農業出版社。北 京。 張東柱 (1992) 牛樟扦插苗之兩種新病害。林業試驗所研究報告季刊 7(3): 231-236。 張淑華、何政坤、蔡錦瑩 (2002) 牛樟之組織培養。台灣林業科學 17(4): 491-501。 張焜標、蔡瑞芬、張耀聰 (2008) 叢枝菌根菌接種對羅漢松科植物於不同 土壤中生長之影響。林業研究季刊 30(1): 15-28。 陳仁炫 (1992) 土壤肥力診斷方法-由土壤性質研判。農藥世界 111: 32-37。 陳仁炫、丁美幸 (1993) 土壤 pH 及磷肥施用對酸性和石灰質土壤磷生物 有效性的影響。中國農業化學會誌 31(5): 653-666。 賀學禮、劉媞、趙麗莉 (2009) 接種叢枝菌根對不同施氮水平下黃 芪生理 特性和營養成分的影響。應用生態學報 20(9): 2118-2122。 黃松根、何坤益、吳國伍、沈勇強、劉文玉 (1996) 牛樟天然林組成與結 構之調查。台灣林業科學 11(4): 349-360。 黃瑞祥 (1990) 牛樟族群分佈之今昔。中華林學會 79 年年會及會員大會 特刊。21 頁。 萬蜀淵 (1994) 園藝植物繁殖學。中國農業出版社。北京。 楊正釧 (2013) 牛樟種子生產發芽與實生苗培育技術。林業研究專訊 20(5): 30-32。 楊旻憲、王才義 (2007) 牛樟之嫁接繁殖。植物種苗 9(3): 16-26。 楊風鈴、趙方貴、劉宏慶、劉新 (2011) 不同煙草栽培地區土壤裏化性質與 AM 真菌分布關係。中國農學通報 27(1): 116-120。 黎靜韻 (1972) 本省水稻土壤之楊離子交換性質研究。農業研究 21(2): 71-86。 熊丙全、陽淑、張勇、曾明 (2009) 叢枝菌根真菌接種時期和劑量對葡萄 扦插苗生長的效應。中國果樹 5:14-18。 劉業經、呂福原、歐辰雄(1994) 台灣樹木誌。國立中興大學農學院。109 頁。 駱韓、曾明 (2007) 叢枝菌根真菌對西番蓮扦插苗生長效應的影響。現代 農業科技3: 5-7。 簡慶德、林讚標 (1997) 牛樟種子發芽促進。牛樟生物學及育林技術研討 會論文集。臺灣省林業試驗所。71-73 頁。 鍾永立、張乃航 (1990) 台灣重要林木種子技術要覽。林業試驗所。 鍾旭和、顏江河 (1994) 菌根接種與土壤含水量對台灣杉幼苗生長之影響。 林業試驗所研究報告季刊 9(4): 291-298。 鍾振德、簡慶德、蔡佳 彬 (2012) 牛樟母樹林與種子園。林業研究專訊 19(4): 21-25。 顏江河、林哲毅 (2002) 兩種土壤中接種菌根對大頭茶苗木的生長效應。 林業研究季刊24(1):45-52。 顏江河、唐盛林 (2000) 兩種闊葉樹菌根之研究。林業研究季刊 22 (2): 43-50。 顏江河、鍾旭和 (1994) 土壤層次與菌根接種對臺灣二葉松幼苗生長及養 分含量之影響。中華林學季刊 27(3): 29-39。 Abe, J. P., G. Masuhara and K. Katsuya (1994) Vesicular-arbuscular mycorrhizal fungi in coastal dune plant communities I. Spore formation of Glomus spp. redominates under a patch of Elymus mollis. Mycoscience 35: 223-238. Aeschbacher, R. A., J. W. Schiefelbein and P. N. Benfey (1994) The genetic and molecular basis of root development. Plant Molecular Biology 45: 25-45. Ardestani, N. K., H. Zare-Maivan and F. Ghanati (2011) Effect of different concentrations of potassium and magnesium on mycorrhizal colonization of maize in pot culture. African Jornal of Biotechnology 10(73): 16548-16550. Azcon, R., E. Ambrosano and C. Charest (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Science 165: 1137-1145. Bannister, P. and W. M. Norton (1974) The response of mycorrhizal and nonmycorrhizal rooted cuttings of heather (Calluna vulgaris (L.) Hull) to variation in nutrient and water regimes. New Phytologist 73(1): 81-89. Barea, J. M. and C. Azcon-Aguilar (1982) Production of plant growth regulating substances by the vesicular arbuscular mycorrhizal fungus – Glomus moseae. Applied & Environmental Microbiology 43: 810-813. Bartolome-Esteban, H. and N. C. Schenck (1994) Spore germination and hyphal growth of arbuscular mycorrhizal fungi in relation to soil aluminum saturation. Mycologia 86: 217-226. Bever, J. (2002) Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant Soil 244: 281-290. Bever, J., J. Morton, J. Antonovics and P. Schultz (1996) Host-dependent sporulation and diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology 84:71-82. Bever, J. D., P. A. Schultz, A. Pringle and J. B. Morton (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. BioScience 51: 923-932. Bray, R. H. and L. T. Kurtz (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59(1): 39-46. Brundrett, M., N. Bougher, T. Grove and N. Malajczuk (1996) Working with mycorrhizas in forestry and agriculture. Pirie Printers, Australia. 374 pp. Carlile, M. J. and S. C. Watinkson (1994) The Fungi. London. 482 pp. Cho, H. Y., C. Y. Chang, L. C. Huang, J. B. Tsai and Z. H. Liu (2011) Indole-3-butyric acid suppresses the activity of peroxidase while inducing adventitious roots in Cinnamomum kanehirae. Botanical Studies 52: 153-160. Citernesi, A. S., C. Vitagliano and M. Giovannetti (1998) Plant growth and root system morphology of Olea europaea L. rooted cuttings as influenced by arbuscular mycorrhizas. The Journal of Horticultural Science and Biotechnology 73(5): 647-654. Cruz, R. E., J. F. de la Zarade, N. S. Agganzae and E. B. Lorilla (1999) Differential mycorrhizal development of some agricultural, horticultural and forestry crops to inoculation of mycorrhizal fungi. In: Jasper D. (ed.), Proceedings of the International Symposium on management of Mycorrhizas in Agriculture, Horticulture and Forestry. Australian Institute of Agricultural Sciences, Australia. p. 54. de Oliveira, A. N. and L. A. de Oliveira (2010) Influence of edapho-climate factors on the sporulation and colonization of arbuscular mycorrhizal fungi in two amazonian native fruit species. Brazilian Archives of Biology and Technology 53(3): 653-661. Daniels, B. A. and H. D. Skipper (1982) Methods for the recovery and quantitative estimation of propagules from soil. pp. 20-45. In: Schenck, N. C. (ed.). Methods and principles of mycorrhizal research. The American Phytopathological Society. Saint Paul. Douds, D. D. and N. C. Schenck (1990) Increased sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimens. Applied and Environmental Microbiology 56: 413-418. Druege, U., M. Xylaender, S. Zerche and H. V. Alten (2006) Rooting and vitality of poinsettia cuttings was increased by arbuscular mycorrhiza in the donor plants. Mycorrhiza 17(1): 67-72. Druege, U., S. Zerche and R. Kadner (2004) Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted pelargonium cuttings in relation to survival and adventitious root formation under low light. Annals of Botany (Lond) 94: 831-842. Dutra, P.V., M. Abad, V. Almela and M. Agustí (1996) Auxin interaction with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith improves vegetative growth of two citrus rootstocks. Scientia Horticulturae 66: 77-83. Gaspar, T., C. Kevers, J. F. Hausman, J. Y. Berthon and V. Ripetti (1992) Practical uses of peroxidase activity as a predictive marker of rooting performance of micropropagated shoots. Agronomie 12: 757-765. Govindarajulu, M., P. E. Pfeffer, H. R. Jin, J. Abubaker, D. D. Douds and J. W. Allen (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435: 819-823. Gerdemann, J. W. and T. H Nicolson (1963) Spores of mycorrhizal Endogone extracted from soil by wet sieving and decanting. Trans Br. Mycological Society 46: 235-244. Guo, Y. J., Y. Ni, H. Raman, B. A. L. Wilson, G. J. Ash, A. S. Wang and G. D. Li (2012) Arbuscular mycorrhizal fungal diversity in perennial pastures; responses to long-term lime application. Plant and Soil 351: 389-403. Graham, J. H. (1986) Citrus mycorrhizae: potential benefits and interactions with pathogens. HortScience 21: 1302-1306. Hartmann, H. T., D. E. Kester, F. T. Davies Jr and R. L. Geneve (1990) Plant Propagation: Principles and Practices, 5th ed. Prentice Hall, New Jersey. 880 pp. Helgason, T., T. J. Daniell, R. Husband, A. H. Fitter and J. P. W. Young (1998) Ploughing up the wood-wide web? Nature 394: 431. Hepper, C. M. (1983) Effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytologist 92: 389-399. Howard, R. J. and J. R. Aist (1980) Cytoplasmic microtubules and fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2-ylcarbamate determined by freeze- substitution of hyphal tip cells. The Journal of Cell Biology 87: 55-64. Ilacob, V. (1989) Agriculture compendium for rural development in the tropics and subtropics. Elsevier Science Publishing Company Inc. 3rd ed. 740 pp. Jie, W., X. Liu and B. Cai (2013) Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes. PLoS ONE 8(8): e72898. Johnson, N.C. (1993) Can fertilization of soil selecl less mutualislic mycorrhizae? Ecological Applications 3: 749-757. Johnson, N. C., G. W. T. Wilson, M. A. Bowker, J. A. Wilson and R. M. Miller (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences 107: 2093-2098. Johansson, J., L. Paul and R. D. Finlay (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. Microbiology Ecology 48: 1-12. Kakdorf, M. and J. Ludwig-Müller (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiologia Plantarum 109: 58-64. Klironomos, J. N. (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292-2301. Lepš, J. and P. Šmilauer (2003) Multivariate Analysis of Ecological Data Using Canoco. Cambridge University Press, Cambridge, UK. MacDonald, C. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78. McGill, W. B. and C. V. Cole (1981) Comparative aspects of organic C, N, S and P cycling through soil organic matter during pedogenesis. Geoderma 26: 267-286. McGonigle, T. P. and A. H. Fitter (1990) Ecological specificity of vesicular arbuscular mycorrhizal associations. Mycological Research 94:120-122. McLean, E. O. (1982) Soil pH and lime requirement. In: Page et al. (eds.) Methods of soil analysis. Part II. Chemical and microbiological properties 2nd edition ASA. CSSA. SSSA. Madison, Wisconsin. Metson, A. J. (1961) Methods of chemical analysis for soil syrvey samples. New Zealand Department of Science and Industrial Research. Soil Bureau Bulletion 12. Government printer, Wellington, New Zealand. Moore, P. D. and S. B. Chapman (1986) Methods in plant ecology. 2nd edition Blackwell Scientific Publications. Oxford, London, Edinburgh. Moreira, M., D. Baretta, S. M. Tsai, S. M. Gomes-da-Costa and E. J. B. N. Cardoso (2007) Biodiversity and distribution of arbuscular mycorrhizal fungi in Araucaria angustifolia forest. Scientia Agricola 64(4): 393-399. Morton, J. B. (1998) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32: 267-324. Niemi, K., H. Häggman and T. Sarjala (2002) Effects of diamines on the interaction between ectomycorrhizal fungi and adventitious root formation on Scots pine in vitro. Tree Physiology 22: 373–381 Öpik, M., M. Moora, J. Liira and M. Zobel (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology 94: 778-790. Plenchette, C., J. A. Fortin and Z. Furlan (1983) Growth response of several plant species to mycorrhiza in soil of moderate P fertility. I. mycorrhizal development under field conditions. Plant Soil 70(2): 199–209. Rhoades, J. D. (1982) Cation exchange capacity. In: Page et al. (eds.) Methods of soil analysis. Part II. Chemical and microbiological properties 2nd edition ASA. CSSA. SSSA. Madison, Wisconsin. Robson, A. D. and L. K. Abbott (1989) The effect of soil acidity on microbial activity in soils. In: Robson A. D. (ed.). Soil Acidity and Plant Growth. Academic Press, Sydney. p. 139-165. Saito, M., H. Oba and T. Kojima (2011) Effect of nitrogen on the sporulation of arbuscular mycorrhizal fungi colonizing several gramineous plant species. Soil Science and Plant Nutrition 57(1) 29-34. Saleh Rasti, N. (2001) Biological fertilizers anf its role at sustainable agriculture. The papers collections of industrial production of biological fertilizers. Iran. Scagel, C. F. (2004) Changes in cutting composition during early stages of adventitious rooting of miniature rose altered by inoculation with arbuscular mycorrhizal fungi. Journal of the American Society for Horticultural Science 129(5): 624-634. Schenck, N. C. and Y. Perez (1990) Mannual for the identification of VA mycorrhizal fungi. INVAM, Gainesville. Florida. Schultz, R. C., P. P. Kormanik, W. C. Bryan and G. H. Brister (1979) Vesicular–arbuscular mycorrhiza influence growth but not mineral concentrations in seedlings of eight sweetgum families. Canadian Journal of Forest Research 9(2): 218-223. Scullion, J., W. R. Eason and E. P. Scott (1998) The effectivity of arbuscular mycorrhizal fungi from high input conventional and organic grassland and grass-arable rotations. Plant Soil 204: 243-254. Silva, F. S. B., A. M. Yano-Melo, J. A. C. Brandão, and L. C. Maia (2005) Sporulation of Arbuscular Mycorrhizal Fungi Using Tris-HCl Buffer in addition to Nutrient Solution. Brazilian Journal of Microbiology 36: 327-332. Smith, S. E. and D. J. Read (2008) Mycorrhizal Symbiosis. 3rd. Academic Press, San Diego. Stürmer, S. L. (2012) A history of the taxonomy and systematic of arbuscular mycorrhizal fungi belonging to the phylum Glomerymycota. Mycorrhizal 22:247-258. Thanuja, T. V., R. V. Hegde and M. N. Sreenivasa (2002) Induction of rooting and root growth in black pepper cuttings (Piper nigrum L.) with the inoculation of arbuscular mycorrhizae. Scientia Horticulturae. 92(3): 339-346. van der Heijden, M. G. A., A. Wiemken and I. R. Sanders (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plants. New Phytologist 157: 569-578. van der Heijden, M. G. A., J. N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boller, A. Wiemken and I. R. Sanders (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 369: 69-72. van der Heijden, M. G. A., R. D. bardgett and N. M. ven Staalen (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 293-310. Vandenkoornhuyse, P., K. P. Ridgway, I. J. Watson, A. H. Fitter, J. P. W. Young (2003) Co‐existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology 12(11): 3085-3095. Vandenkoornhuyse, P., R. Husband, A. H. Fitter and J. P. W. Young (2002) Arbuscular mycorrhizal community composition with co-occurring plant species from a grassland ecosystem. Molecular Ecology 11: 1555-1564. Verbruggen, E., M. G. A. Van der Heijden, J. T. Weedon, G. A. Kowalchuk and W. F. M. Röling (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Molecular Ecology 21: 2341–2353. Vogel-Mikus, K., P. Pongrac, P. Kump, M. Neceman and M. Regvar (2005) Colonization of a Zn, Cd and Pb hyper accumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungi mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution 139(2): 362-371. Wagg, C., J. Jansa, M. Stadler, B. Schmid and M. G. van der Heijden (2011) Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 92(6):1303-1313. Wang, P., B. Shu, Y. Wang, D. J. Zhang, J. F. Liu and R. X. Xia (2013) Diversity of arbuscular mycorrhizal fungi in red tangerine (Citrus reticulata Blanco) rootstock rhizospheric soils from hillside citrus orchards. Pedobiologia 56(3): 161-167. Wardle, D.A., R. D. Bardgett, J. N. Klironomos, H. Setälä, W. H. Van der Putten and D. H. Wall (2004) Ecological linkages between aboveground and belowground biota. Science 304: 1629-1633. Wei, J., J. Z. Zhao and H. B. Deng (2005) Nitrogen bio-cycle in alpine tundra ecosystem of Changbai Mountain and is comparison with arctic tundra. Chinese Journal of Environmental Science 26: 1-4. Wilson, J., R. C. Munro, K. Inglely, P. A. Mason, M. P. N. Jefwa, J. M. C. P. Dick and R. R. B. Leaky (1991) Tree establishment in semiarid lands of Kenya – Role of mycorrhizal inoculation and water-retaining polymer. Forest Ecology and Management 45: 153-163. Yoshimura, Y., A. Ido., K. Iwase, T. Matsumoto and M. Yamato (2013) Communities of arbuscular mycorrhizal fungi in the roots of Pyrus pyrifolia var. culta (Japanese pear) in orchards with variable amounts of soil-available phosphorus. Microbes and Environments 28(1): 105-111. Zai, X. M., P. Qin, S. W. Wan, F. G. Zhao, G. Wang, D. L. Yan and J. Zhou (2007) Effects of arbuscular mycorrhizal fungi on the rooting and growth of beach plum (Prunus maritima) cuttings. Journal of Horticultural Science and Biotechnology. 82(6): 863-866. Zhao, J., Y. Dong, X. B. Xie, X. Li, X. X. Zhang and X. Shen (2011) Effect of annual variation in soil pH on available soil nutrient in pear orchards. Acta Ecologica Sinica 31: 212-216.
摘要: 
牛樟 (Cinnamomum kanehirae Hayata) 為台灣特有之珍貴樹種,苗圃扦插苗培育成效相當良好,但野外造林成活率低且易發生生長遲滯之情形,推測 與育苗過程之無菌介質有關。本研究為解決牛樟扦插苗造林之困境,針對臺灣中部地區人工及天然牛樟林土壤根域進行菌根菌調查,以瞭解生育地土壤性質、叢枝菌根菌組成及菌根群落與環境因子之關係,隨後選擇生育地部分優勢菌種 (Acalospora mellea、A. morrowiae 與 Septoglomus constrictum) 在森林土、廢棄煤礦土及農田土進行接種試驗,以期將來提供牛樟造林作業之參考之資料,並提高造林之成效。結果顯示,生育地土壤受到人為經營影響,土壤有效磷在人工林與天然林之間呈顯著差異,其與土壤孢子產量呈負相關。14 個牛樟林樣區內調查共計 12 屬 21 種叢枝菌根菌,以 Glomus deserticola、A. mellea、Se. constrictum、Sclerocystis
rubiformis 分佈最廣。經矩陣群團分析、主成份分析及冗餘分析,共分出 1個優勢群落及 5 個離散群落,顯示菌根群落主要受到海拔高、土壤有效磷、置換性鉀離子、pH 值及土壤全氮等環境條件影響而分化。牛樟扦插苗接種菌根後,確實在牛樟扦插苗育苗初期菌根可促進淨高生長、總新生葉面積、全株乾重、S/R 率、菌根依存度與養分吸收等功效。

Cinnamomum kanehirae Hayata is an endemic precious tree species to Taiwan. The effect of cultivation by nursery cuttings was quite good but the survival rate of plantation was low and prone to the situation of growth retardation. We assumed it was related to the growing media of seedlings. To solve the predicament of plantation by C. kanehirae cuttings, this study
investigated arbuscular mycorrhizal fungi in the soil and root system of C. kanehirae forest, either from artificial forests and natural forests in central Taiwan, to understand the relationships among the soil property of the habitat, the composition of arbuscular mycorrhizal fungi, mycorrhizal community and
environmental factors. Parts of the dominant arbuscular mycorrhizal fungi species (Acalospora mellea, A. morrowiae and Septoglomus constrictum) in the
habitat would then be selected for trial inoculations with C. kanehirae cuttings under forest soil, coal mine spoil and farm soil. Hope to provide suggestions
for future forestation of C. kanehirae and to increase its effect. The results showed that the habitat soil was affected by man-made management. There was significant difference for soil available phosphorous between artificial and natural forests. Soil available phosphorous was negatively correlated with sporulation. A total of 12 genera and 21 species of arbuscular mycorrhizal fungi were found the 14 C. kanehirae forest samples, among which Glomus
deserticola, A. mellea, Se. constrictum and Sclerocystis rubiformis were most widely distributed. By matrix cluster analysis, principle component analysis
and redundancy analysis, one dominant type and 5 non-dominant types were isolated, indicating that the differentiation of mycorrhizal community was
affected mainly by environmental factors, including altitude, soil available phosphorous, exchangeable potassium, pH value and total soil nitrogen. After
inoculating C. kanehirae cuttings with mycorrhizal fungi, it could improve functions, including net height growth, total net leaf area, total dry weight, S/R
ratio, mycorrhizal dependency and nutrition absorption ability.
URI: http://hdl.handle.net/11455/89300
其他識別: U0005-0107201516045100
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:森林學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7101033009-1.pdf2.32 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.