Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89310
標題: Effect of mycorrhizal inoculation on the growth of Chamaecyparis obtusa var. formosana seedling in the reclaimed vegetable soil
菌根接種對台灣扁柏幼苗在菜園回收地土壤之生長效益
作者: Tzu-Hsuan Lo
羅紫瑄
關鍵字: 叢枝菌根菌;菌根大量繁殖;台灣扁柏;菜園回收地;硫磺;復育造林;Arbuscular mycorrhizal fungi;Mycorrhizal mass multiplication;Chamaecyparis obtusa var. formosana;Reclaimed area from vegetable field;Sulfur;Afforestation
引用: 于永光、趙斌 (2008) 不同 pH 水平下兩種菌根真菌對紫云英生長的影響及其相互作用。菌物學報 27(2):209-216。 林子超 (2009)。靜默恆久的共生關係-菌根菌與植物。自然保育季刊65:41-44。 林子超 (2015) 大屯火山群大油坑硫磺噴氣口鄰近區域植群組成與叢枝菌根菌共生關係研究。國立中興大學森林學系博士論文。共 83 頁。 李明仁 (2010) 育林實務手冊。行政院農業委員會林務局。42-59 頁。 李明仁 (2014) 菌根菌應用於森林苗圃育苗的技術與成效。台灣林業 40(1):26-31。 李明仁、林瑞進 (2011) 菌根菌與優質苗木的關係-逆境造林菌根苗之應用。林業研究專訊18(6): 16-19。 李明仁、蘇碧華、王露儀 (1998) 囊叢枝菌根菌對臺灣泡桐根瘤線蟲之效應。中華林學會 87 年會特刊。第 63 頁。 李新華、劉景雙、于君寶、王金達 (2006) 土壤硫的氧化還原及其環境生態效應。土壤通報 37(1):159-163。 吳繼光、林素楨 (1998) 囊叢枝內生菌根菌應用技術手冊。臺灣省農業試驗所。共 232 頁。 胡弘道 (1990) 林木菌根。國立編譯館。666頁。 洪建民 (2007) 利用酸性改良劑降低粘板岩石灰性土壤pH值對土壤中鉀行為的影響。國立中興大學土壤環境科學系博士論文。共 110 頁。 陳仁炫 (1992) 土壤肥力診斷方法-由土壤性質研判。農藥世界 111:32-37。 陳存澤 (2008) 不同的施肥管理對土壤化學性質、酵素活性及微生物族群結構的影響。國立台灣大學農業化學系碩士論文。共 106 頁。 陳彥宇 (2014) 常見肥料知識:土壤酸鹼 pH 值的管理。台肥季刊 54(4)。 張旭紅、朱永官、王幼珊、林愛軍、陳保冬、張美慶 (2006) 不同施肥處理對叢枝菌根真菌生態分布的影響。生態學報 26(9):3082-3087。 莊明富、程永雄 (1999) 泥炭苔對叢枝菌根菌繁殖之影響。中華農業研究 48(4):64-70。 郭幸榮 (2007) 育林手冊。行政院農業委員會林務局。75-83 頁。 郭珆 (2013) 中海拔菜園回收地土壤性質與菌根苗木生長之研究。國立中興大學森林研究所碩士論文。共49頁。 莊能雄 (1987) 高冷地蔬菜園土壤改良與施肥改進。花蓮區農業推廣簡訊 5(1): 18-19。 郭魁士 (1992) 土壤學。中國書局。238-240 頁。 張繼中 (2009) 臺東地區酸性土壤問題及其改善方法。台東區農業專訊 67: 14-18。 馮固、楊茂秋、白灯莎、黃全生 (1993) 石灰性土壤上 VA 菌根真菌對土壤有機磷礦化的影響極其機理初探。土壤通報 24(4): 184-186。 黃秀緞 (2005) 叢枝菌根菌與土壤鹽分對楝樹、烏桕及欖仁苗木生長及生理特性之效應。國立嘉義大學農學院林業研究所碩士論文。119頁。 鄔家琪、張喜寧 (2003) 逆境地區叢枝菌根菌接種源之生產與活力。宜蘭大學學報 1:17-24。 楊曉紅、孫中海、邵菊芳、瑞建 (2004) 叢枝菌根真菌培養方法研究進展。菌物學報 23(3):444-456。 趙靖豐 (2000) 以硫磺及硫酸鋁改良石灰質土壤策略下對磷行為的探討。國立中興大學土壤環境科學系碩士論文。共 88 頁。 賴文龍、吳尚鑒、藍祐利、林文陞 (2004) 梨山地區甘藍蔬菜園土壤肥培管理之探討。台中區農情月刊57。 劉仕平、張玲琪、李成雲、郭仕平、楊春燕 (2003) VA菌根營養生理研究概況及其應用前景。西南農業學報16(2):93-97。 劉常珍、趙言文、胡正義 (2004) 硫元素對蔬菜地土壤 NO3--N淋溶損失的影響。南京農業大學學報。27(3): 54-57。 劉業經、呂福原、歐辰雄 (1994) 台灣樹木誌。國立中興大學農學院。第 72 頁。 劉潤進、李曉林 (2000) 叢枝菌根及其應用。科學出版社,北京。共 2224 頁。 顏江河 (2012) 武陵徵收農地土壤性質與菌根對造林苗木生長之關係。雪霸國家公園管理處自行研究報告。共 23 頁。 顏江河、李苑瑋 (2007) 出雲山苗圃菌根調查與苗木菌根接種試驗。林業研究季刊 29(2):19-26。 顏江河、鍾旭和(1990) 台灣杉幼苗感染 Scutellospora nigra 內生菌根之觀察。林業試驗所研究報告季刊5 (1):51-60。 Aarle, I. V., P. A. Olsson and B. Söderström (2002) Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytologist 155(1):173-182. Amaya-Carpio, L., F. T. Davies, Jr., T. Fox, and C. He (2009) Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. fistulosa. Photosynthetica 47(1):1-10. Al-Karaki, G. N. (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae 109(1): 1-7. Allen, M. F., W. Swenson, J. I. Querejeta, L. M. Egerton-Warburton and K. K. Treseder (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annual Review of Phytopathology 41: 271-303. Al-Raddad, A. (1995) Mass production of Glomus mosseae spores. Mycorrhiza 5:229-231. Asghari, H. R. and T. R. Cavagnaro (2014) Mycorrhizas effects on nutrient interception in two riparian grass species. Eurasian Journal of Soil Science 3(4): 274-285. Azcón-Aguilar, C. and J. M. Barea (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Scientia Horticulturae 68(1-4): 1-24. Bago B., H. Vierheilig, Y. Piché and C. A. Aguilar (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytologist 133(2): 273–280. Banerjee, K., M. H. Gadani, K. K. Srivastava, N. Verma, Y. T. Jasrai and N. K. Jain (2013) Screening of efficient arbuscular mycorrhizal fungi for Azadirachta indica under nursery condition: A step towards afforestation of semi-arid region of western India. Brazilian Journal of Microbiology 44(2): 587-593. Bärtschi, H., V. G. Pearson and I. Vegh (1981) Vesicular-arbuscular mycorrhiza formation and root rot disease (Phytophthora cinnamomi) development in Chamaecyparis lawsoniana. Journal of Phytopathology 102 (3): 213-218. Brundrett, M., N. Bougher, T. Grove and N. Malajczuk (1996) Working with Mycorrhizas in Forestry and Agriculture. Pirie Printers, Australia. p.22. Bush, J. K. (2008) The potential role of mycorrhizae in the growth and establishment of Juniperus seedlings. Ecological Studies 196: 111-130. Caravaca, F., J. M. Barea, J. Palenzuela, D. Figueroa, M. M. Alguacil and A. Roldán (2003) Establishment of shrub species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Applied Soil Ecology 22(2): 103-111. Chaurasia, B. and P. K. Khare (2005) Hordeum vulgare: a suitable host for mass production of arbuscular mycorrhizal fungi from natural soil. Applied Ecology and Environmental Research 4(1): 45-53. Daniels, B. A. and H. D. Skipper (1982) Methods for the recovery and quantitative estimation of propagules from soil. pp. 20-45. In: Schenck, N. C. (ed.). Methods and Principles of Mycorrhizal Research. The American Phytopathological Society. Saint Paul. Darrah, P. R. (1991) Models of the rhizoshpere. Plant Soil 138(2): 147-158. Diaz, A., I. Greena and M. Tibbettb (2008) Re-creation of heathland on improved pasture using top soil removal and sulphur amendments: edaphic drivers and impacts on ericoid mycorrhizas. Biological Conservation 141(6): 1628-1635. Dodd, J. C., C. C. Burton, R. G. Burns and P. J. Jeffries (1987) Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol. 107: 163-172. Douds, D. D. J. and N. C. Schenck (1990) Increased sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimes. Applied Environmental Microbiology 56(2): 413-418. Estrada, B., R. Aroca, C. Azcón-Aguilar, J. M. Barea and J. M. Ruiz-Lozano (2013) Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant and Soil 370(1-2): 175-185. Ferrol, N., R. Calvente, C. Cano, J. M. Barea and C. Azcón-Aguilar (2004) Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertificationthreatened semiarid Mediterranean ecosystem. Applied Soil Ecology 25(2): 123-133. Gaur, A. and A. Adholeya (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10(1): 43-48. Gerdemann, J. W. and T. H Nicolson (1963) Spores of mycorrhizal Endogone extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46(2): 235-244. Gilmore, A. E. (1968) Phycomycetous mycorrhizal organisms collected by open-pot culture methods. Hilgardia 39(4): 87-105. Giridhar, B. A. and R. M. Sudhakara (2011) Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue. Environmental Pollution 159(1): 25-29. Goulding, K. (2000) Nitrate leaching from arable and horticultural land. Soil Use and Management 16: 145-151. Gryndler, M., H. H. Selova, I. Chvatolova and M. Vosatka (1998) In vitro profileration of Glomus fistulosum intraradical hyphae from mycorrhizal root segments of maize. Mycological Research 102(9): 1067-1073. Harris, G. P. (2001) Biogeochemistry of nitrogen and phosphorus in Australian catchments, rivers and estuaries: effects of land use and flow regulation and comparisons with global patterns. Marine and Freshwater Research 52(1): 139-149. Hu, J., X. Cui, J. Dai, J. Wang, R. Chen, R. Yin and X. Lin (2014) Interactive effects of arbuscular mycorrhizae and maize (Zea mays L.) straws on wheat (Triticum aestivum L.) growth and organic carbon storage in a sandy loam soil. Soil and Water Research 9(3): 119-126. Hu, J., X. Lin, J. Wang, X. Cui, J. Dai, H. Chu and J. Zhang (2010) Arbuscular mycorrhizal fungus enhances P-acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime. Applied Microbiology and Biotechnology 88(3): 781-787. Hua, J., X. Lin, R. Yin, Q. Jiang and Y. Shao (2009) Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). Journal of Environmental Sciences 21(9): 1214-1220. Janzen, H. H. and J. R. Bettany (1986) Release of available sulfur from fertilizers. Soil Science 66(1): 91-103. Janzen, H. H. and J. R. Bettany (1987) The effect of temperature and water potential on sulfur oxidation in soils. Soil Science 144(2): 81-89. Johnson, D., P. J. Vandenkoornhuyse, J. R. Leake, L. A. Gilbert, R. E. Booth, J. P. Grime, J. P. W. Young and D. J. Read (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist 161(2): 503-515. Johnson, N. C. (1993) Can fertilization of soil select less mutualistic mycorrhizae. Ecological Applications 3(4): 749-757. Joshua, P. S., M. G. Jay, S. C. C. Joy, E. L. Jon and F. B. Joan (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biology and Biochemistry 31(6): 831-838. Karaca H. (2014) Effects of elemental sulfur and mycorrhizae on the yield of wheat in different soils. Journal of Plant Nutrition 37(1): 1-15. Karaca, H., V. Uygura, A. Özkanb and Z. Kaya (2013) Effects of mycorrhizae and fertilization on soybean yield and nutrient uptake. Communications in Soil Science and Plant Analysis 44(16): 2459-2471. Kaushish, S., A. Kumar and A. Aggarwal (2011) Influence of hosts and substrates on mass multiplication of Glomus mosseae. African Journal of Agricultural Research 6(13): 2971-2977. Koske, R. E. and J. N. Gemma (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92(4): 486-488. Kumar, A., C. Mangla, A. Aggarwal and V. Parkash (2010) Arbuscular mycorrhizal fungal dynamics in the rhizospheric soil of five medicinal plant species. Middle-East Journal of Scientific Research 6(3):281-288. Labidi, S., F. B. Jeddi, B. Tisserant, D. Debiane, S. Rezgui, A. Grandmougin-Ferjani and A. L. H. Sahraoui (2012) Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress. Mycorrhiza 22(5): 337-345. Lawrence J. R. and J. J. Germida (1988) Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils. Soil Science Society of America Journal 52(3): 672-677. Li, X. L., E. George and H. Marschner (1991) Phosphorus depletion and pH decrease at the root-soil and hyphaesoil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist 119(3): 397-404. Liu, A., C. Plenchette and C. Hamel (2007) Soil nutrient and water providers: How arbuscular mycorrhizal mycelia support plant performance in a resource-limitedworld, p. 37-66. In: Hamel, C. and C. Plenchette (eds.). Mycorrhizal in Crop Production. Haworth, New York, NY. Lovelock, C. E. and J. J. Ewel (2005) Links between tree species symbiotic fungal diversity and ecosystem functioning in simplified tropical ecosystems. New Phytologist, 167: 219-228. MacDonald, C. C. (1977) Methods of Soil and Tissue Analysis Used in the Analytical Laboratory. Canadian Forestry Service Information Report MM-X-78. Marschner, H. and B. Bell (1994) Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159(1): 89-102. Menge, J. L. (1984) Inoculum production. In: C. L. Powell D.J.Bagyarai (ed.) VA Mycorrhizae, CRC, Boca Rafon. p.187-204. McLean, E. O. (1982) Soil pH and lime requirement. In: Page et al. (eds.) Methods of soil analysis. Part II. Chemical and microbiological properties 2nd ed. ASA. CSSA. SSSA. Madison, Wisconsin. Michelsen, A. (1992) Mycorrhiza and root nodulation in tree seedlings from five nurseries in Ethiopia and Somalia. Forest Ecology and Management 48(3-4): 335-344. Miyamoto, S. and J. Ryan (1976) Sulfuric acid for the treatment of ammoniated irrigation water: II. Reducing calcium precipitation and sodium hazard. Soil Science Society of America Journal 40(2): 305-309. Moore, P. D. and S. B. Chapman (1986) Methods in plant ecology. 2nd ed. Blackwell Scientific Publications. Oxford, London, Edinburgh. Muthukumar, T., K. Udaiyan and V. Rajeshkannan (2001) Response of neem ( Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biology and Fertility of Soils 34(6): 417-426. Neil, C. and R. Jane (2004) Biology. 7rd ed. Benjamin Cummings. Inc. p. 65. Olsen, S. R., C. V. Cole, F. S. Watanabe and L. A. Dean (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture Circular 939. Olsen, S. R., F. S. Watanabe and C. V. Cole. (1960) Soil properties affecting the solubility of calcium phosphates. Soil Science 90(1): 44-50. Oliveira, R. S., M. Vosátka, J. C. Dodd and P. M. L. Castro (2005) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16: 23-31. Oliveira, R. S., P. M. L. Castro, J. C. Dodd and M. Vosátka (2006) Different native arbuscular mycorrhizal fungi influence the coexistence of two plant species in a highly alkaline anthropogenic sediment. Plant and Soil 287:209-221. Peng, S., D. M. Eissenstat, J. H. Graham, K. Williams and N. C. Hodge (1993) Growth depression in mycorrhizal citrus at high phosphorus supply: analysis of carbon costs. Plant Physiology 101(3): 1063-1071. Penn C. J. and R. B. Bryant (2008) Phosphorous solubility in response to acidification of dairy manure amended soils. Soil Science Society of America Journal 72(1): 238-243. Plenchette, C., J. A. Fortin and V. Furlan (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant and Soil 70(2): 211-217. Prasad, K (2002) Effect of arbuscular mycorrhizae on biomass yield, uptake and translocation of nitrogen, phosphorous,potassium in Azadirachta indica L. In: Manoharachary, C., D. K. Purohit, S. R. Reddy, M. A. Singaracharya and S. Girisham (eds) Frontiers in Microbial Biotechnology and Plant Pathology. Scientific Publishers, Jodhpur, p. 187-191. Rajan, S. K., B. J. D. Reddy and D. J. Bagyaraj (2000) Screening of arbuscular mycorrhizal fungi for their symbiotic efficiency with Tectona grandis. Forest Ecology and Management 126(2): 91-95. Rhoades, J. D. (1982) Cation exchange capacity. In: Page et al. (eds.) Methods of Soil Analysis. Part II. Chemical and Microbiological Properties 2nd ed. ASA. CSSA. SSSA. Madison, Wisconsin. Rodriguez, R. and R. Redman (2008) More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. Journal of Experimental Botany 59(5): 1109–1114. Ruiz-Lozano, J. M., R. Azcón (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10(3): 137-143. Ryan, J., H. M. Hasan, M. Baasiri and H. S. Tabbara (1985) Availability and transformation of applied phosphorus in calcareous Lebanese soils. Soil Science Society of America Journal 49(5): 1215-1220. Ryan, M. H. and Graham, J. H. (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture. Plant and Soil 244(1-2): 263-271. Schenck, N. C. and Y. Perez (1990) Mannual for the identification of VA mycorrhizal fungi. INVAM, Gainesville. Florida. Sieverding, E. (1990) Ecology of VAM fungi in tropical agrosystems. Agriculture Ecosystems Environment 29(1-4): 369-390. Smith, S. E. and D. J. Read (1997) Mycorrhizal Symbiosis. 2nd ed. Academic Press Inc. 605 pages. Sousa, N. R., A. R. Franco, R. S. Oliveira and P. M. L. Castro (2012) Ectomycorrhizal fungi as an alternative to the use of chemical fertilizers in nursery production of Pinus pinaster. Journal of Environmental Management 95: 269-274. Tahat, M. M., S. Kamaruzaman, O. Radziah, J. Kadir and H. N. Masdek (2008) Plant host selectivity for multiplication of Glomus mosseae spore. International Journal of Botany, 4(4): 466-470. Tanwar, A., A. Aggarwal, A. Yadav and V. Parkash (2013) Screening and selection of efficient host and sugarcane bagasse as substrate for mass multiplication of Funneliformis mosseae. Biological Agriculture and Horticulture 29(2): 107-117. Tawaraya, K., M. Saito, M. Morioka and T. Wagatsuma (1994) Effect of phosphate application to arbuscular mycorrhizal onion on the development and succinate dehydrogenase activity of internal hyphae. Soil Science and Plant Nutrition 40(4): 667-673. Tunesi, S., V. Poggi and C. Gessa (1999) Phosphorous adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals. Nutrient Cycling in Agroecosystems 53(3): 219-227. Urgiles, N., P. Lojan, N. Aguirre, H. Blaschke, S. Günter, B. Stimm and I. Kottke (2009) Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: a step towards reforestation with native species in the Andes of Ecuador. New Forests 38(3): 229-239. Wang, Z. H., J. L. Zhang, P. Christie and X. L. Li (2008) Influence of inoculation with Glomus mosseae or Acaulospora morrowiae on arsenic uptake and translocation by maize. Plant and Soil 311(1-2): 235-244.
摘要: 
一般需要復育造林的地區大多為不良生育環境,因此苗圃培育優質苗木是造林成功的關鍵之一,菌根 (mycorrhiza) 苗木應用於逆境造林的效益廣泛被探討,且菌根能降低苗木移植後所帶來的衝擊,因此於苗圃建立菌根感染系統是有其必要性。本研究以丹大地區台灣扁柏 (Chamaecyparis obtusa var. formosana) 林下叢枝菌根菌 (arbuscular mycorrhizal fungi) 作為實驗菌種,進行一套苗木菌根感染系統,篩選適當之繁殖宿主,並以繁殖後的菌土作為介質,培育台灣扁柏幼苗,比較菌根苗與非菌根苗的生長差異,另外,探討不同菌根接種源及硫磺處理,對台灣扁柏苗木在丹大事業區菜園回收地土壤的生長及土壤養分之影響。結果顯示,以不同宿主感染菌根,菌根產孢數量由高至低分別為玉米、苜蓿及百喜草,菌種方面有 3 菌種繁殖成功,其中 Acaulospora. morrowiae 孢子數量明顯最多,使用菌土培養台灣扁柏幼苗,菌根感染率約為 42 %,菌根幼苗之生物量、植體養分含量皆明顯高於無菌根幼苗。不同菌根接種源於菜園土皆能感染台灣扁柏,幫助其正常生長,有效降低土壤 pH 值、增加有效磷含量、降低土壤養分淋洗量,而菜園地本身菌種的菌根效益較台灣扁柏林下菌種低。硫磺處理能降低土壤 pH 值及降低陽離子吸附力,但卻降低菌根對台灣扁柏的生長效益。本研究發現,菌根苗木能減少育苗時間,並在高鈣的鹼性土壤中提高苗木對環境的適應性,雖然施加硫磺能改善土壤環境,但對台灣扁柏苗木沒有明顯的生長效益,還是需要感染菌根,方能菜園回收地維持正常生長。

Most of afforestation areas are usually poor sites for plant growth. Therefore, cultivating high-quality seedlings in the nursery is one of the keys to successful afforestation. Planting mycorrhizal seedlings had not only the benefit of increasing their survival, but also could reduce the impact after transplantation. As a result, it is necessary to set up the mycorrhizal infection system in the nursery. The arbusclar mycorrhizal fungi that was collected under the Chamaecyparis obtusa var. formosana forest in the Dan-da region were used in this study. We developed a seedling infection system and chose the appropriate propagation host. After the mass propagation, C. obtusa var. formosana seedlings planted in the mycorrhizal soils and compared the growth difference between mycorrhizal seedlings and non-mycorrhizal seedlings. In addition, it was also discussed different kinds of mycorrhizal inoculum source and sulfur treatment affected the growth of C. obtusa var. formosana seedlings and soil nutrients in Dan-da reclaimed vegetable field. The results showed that by using different mycorrhizal fungi to infect different hosts, the amounts of mycorrhizal spores produced in descending order are corn, alfalfa and bahia grass respectively. There were three mycorrhizal fungi species successfully propagated, and Acaulospora. morrowiae had the highest amount of spores among these three species. The mycorrhizal colonization was about 42% by using mycorrhizal soils to cultivate C. obtusa var. formosana seedlings. Apparently, biomass and nutrient content of mycprrhizal seedlings both were higher than those of non-mycorrhizal seedlings. All kinds of mycorrhizal inoculum source which are inoculated to C. obtusa var. formosana seedlings could helpe plant normally grow in vegetable field soil, reduced soil pH, increased available P content and reduced soil nutrient leaching. The benefit of mycorrhizal fungi which collected under the C. obtusa var. formosana forest was better than those from vegetable field. Sulfur treatment could reduce soil pH and nutrient antagonism but decreased the benefit of C. obstusa var. formosana seedlings growth by mycorrhiza. This study showed that the production of mycorrhizal seedlings could reduce incubation time and improve seedlings adaptability to the environment in alkaline soil of high calcium content. Although sulfur could be applied to improve the soil environment, there was no obvious benefit for C. obtusa var. formosana seedlings growth. In conclusion, it was necessary to inoculate mycorrhiza to C. obtusa var. formosana seedlings in order to maintain its normal growth in the reclaimed vegetable field.
URI: http://hdl.handle.net/11455/89310
其他識別: U0005-0908201513480800
Rights: 同意授權瀏覽/列印電子全文服務,2016-08-19起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102033011-1.pdf1.91 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.