Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89313
標題: Application of nondestructive testing to evaluate the mechanical properties of wood members used in ecological engineering
非破壞檢測技術應用於生態工程木構件之性質評估
作者: Yu-Chun Lin
林育群
關鍵字: 生態工程;非破壞檢測;微破壞檢測;耐久性評估;CO2釋放率;ecological engineering;nondestructive method;micro-destructive method;durability assessment;carbon dioxide emission rate
引用: 中華民國國家標準(2011)CNS 454,木材抗彎試驗法。經濟部標準檢驗局。 中華民國國家標準(2011)CNS 3000,加壓注入防腐處理木材。經濟部標準檢驗局。 中華民國國家標準(2011)CNS 14495,木材防腐劑。經濟部標準檢驗局。 中華民國國家標準(2011)CNS 14630,針葉樹結構用製材。經濟部標準檢驗局。 中華民國國家標準(2011)CNS 14730,防腐處理木材之防腐劑吸收量測定法。經濟部標準檢驗局。 王松永(1992)木材物理學。國立編譯館主編。 王松永、丁昭義(1995)林產學(上)。臺灣商務印書館主編。 王松永(1998)木材天然耐朽性及其防止處理。林產工業17(1):219–234。 王松永(2000)木材利用與環境保護。木質建築4:94–107。 王松永(2002)商用木材。中華林產事業協會出版。 王松永(2003)木質材料利用對二氧化碳涵存之效應,氣候變遷對森林之二氧化碳吸存影響研討會論文集。中華林學會(2003):125–144。 王松永(2005)森林與木材對二氧化碳涵存之貢獻。台灣林業31(3):20–28。 王松永、洪崇彬、林法勤(2005)林產工業能源消費、CO2排放與碳貯存。「森林經營對二氧化碳吸存之貢獻」研討會。 王松永、洪崇彬(2005)疏伐木材在生態工法擋土牆之建造。台灣林業31(4):15–28。 王松永、蔡明哲(2005)古蹟與歷史建築物生物劣化之診斷與防治。林業研究專訊。12(5)。 王培蓉、汪大雄、林俊成(2013)台灣柳杉造林歷史回顧及經營方式探討。中華林學季刊46(2):179–188。 楊德新、陳湘琴、王松永、蔡明哲(2003)非破壞性檢測技術應用於評估單板貼面定向粒片板之性質。中華林學季刊36(2):199–209。 楊德新、陳湘琴、賴志恆、王松永(2004)不同頻率超音波技術評估商用粒片板性質之探討。林產工業23(1):33–42。 楊德新、邱志明、郭博文、王松永、林振榮(2005)超音波檢測技術評估商用地板材質之研究。台灣林業科學20(2):113–121。 蔡明哲、徐明福(1998)超音波檢測技術應用於台灣古蹟大木構件損壞評估之探討。建築學報27:45–55。 蔡崑堭(2009)木材保存講義。國立嘉義大學木質材料與設計學系。 林蘭東、楊德新、曾家琳、李佳如、高毓謙、劉子棻、王松永、蔡明哲(2008)古蹟建築木材含水率測定法之相關係數及其對超音波傳遞速度之影響。臺大實驗林研究報告22(2):75–87。 林振榮、楊德新、林育群(2013)生態工法的木構件劣化檢查及診斷之籌劃。林業研究專訊20(1)。 林振榮、蔡明哲、王松永、楊德新、林蘭東(2010)應用木材表面腐朽偵測儀(Pilodyn)評估杉木木構件殘留強度之研究。林產工業29(2):89–98。 林振榮、蔡明哲、王松永(2005)建築物木質構件保存的非破壞性評估法。林業研究專訊12 (5)。 林振榮、曾家琳、李佳如、王亞男、蔡明哲(2008)柳杉紅色及黑色心材造林木物理性材質之評估。臺大實驗林研究報告22(4):221-227。 林政興、楊育誠、連惠邦(2009)生態工程節能減碳評估。第十三屆海峽兩岸水利科技交流研討會。 林志憲、李佳如、楊德新(2012)木質構造建築構件火災災後調查與抗彎性質評估—以溪頭青年活動中心為例。林業研究季刊 34(1):71–82。 林志憲(2011)三種針葉樹製造直交式結構用實木板材之基本性質探討。中興大學森林學系所碩士論文。 林務局(1995)第三次台灣森林資源及土地利用調查。 梁勝評、王松永、林法勤(2002)臺灣地區木質家具製程之耗能、二氧化碳排放量及碳素貯存量之評估。林產工業21(4):243–252。 陳鴻輝(2003)水土保持學。新文京開發出版有限公司。 陳永龍、陳載永、吳志鴻(2010)淺談真菌降解木材機制與環境友善型木材防腐劑。中華林學季刊43(1):181–189。 陳勁豪、林振榮、詹明勳、徐光平、王松永(2009)不同栽植密度與疏伐度柳杉立木及其木製品固碳量與碳排放量。林產工業26(1):45–52。 黃彥三、陳欣欣(1996)以打音法非破壞試驗推定木材含水率變化之研究。台灣林業科學11(4):367–372。 李佳如、楊德新(2010)應用非破壞檢測技術評估杉木集成元之抗彎性質。林業研究季刊。32(4):1–16。 周惠明、金重為、尤紀雪(1991)木材防腐。北京,科學出版社:23–69。 詹明勳、曾郁珊、蔡明哲、高毓謙、李佳韋、郭佩鈺、黃憶汝(2005)三種非破壞檢測儀器應用於柳杉造林木立木材質之評估。台大實驗林研究報告19(3):207–216。 池玉杰(2003)木材腐朽與木材腐朽菌。北京,科學出版社:45–52 劉錦坤(2006)超音波檢測技術應用於木構件劣化之評估。屏東科技大學木材科學與設計系碩士論文。 許富蘭、李鴻麟(2008)藥劑處理對木材固碳之效能。林產工業 27(1):41~56。 陳克恭(2006)木材防腐藥劑成分對木材真菌之抑制效能。國立台灣大學森林環境暨資源學系碩士論文。 洪崇彬、林法勤(2009)應用非破壞檢測技術於歷史建築木結構之探討─以台南縣柳營吳晉淮故居為例。文化資產保存學刊10:29–38。 葉民權、李文雄、林玉麗(2006)國產柳杉造林木開發結構用集成材之研究。台灣林業科學21(4):531–46。 張上鎮(2006)木材保存講義:防治木材生物劣化的施工與處理方法。國立台灣大學森林環境暨資源學系。 鄭森松、莊閔傑、林群雅、陳育涵、王亞男、張上鎮(2012)紅心和黑心柳杉木材耐腐朽性之比較。臺大實驗林研究報告26(1):1–17。 鄭森松、張惠婷、古惠菁、古喬云、張上鎮(2006) 黑心柳杉造林木精油及其成分之抗真菌活性。中華林學季刊39(4):557-574。 鄭博陽(2011)木質生態工成擋土牆結構分析與測試。國立台灣大學森林環境暨資源學系碩士論文。 張靜綺、許富蘭、李鴻麟(2010)以 O&D 處理改善木材之耐腐朽性。中華林學季刊43(3):447–458。 Alves, R. C., P. J. Motta, C. F. Bremer, J. N. R. Mantilla and E. V. M. Carrasco (2013) Application of the nondestructive method of drill resistance for determination of the strength of Brazilian tropical woods. International Journal of Engineering & Technology. 13(04). American Wood Protection Association (2011) U1-11:User specification for treated wood. AWPA. American Wood Protection Association (2011) E7-09: Standard method of evaluating wood preservatives by field tests with stakes. AWPA. Bowyer, J. L., R. Shmulsky, J. G. Haygreen (2003) Forest Products and Wood Science, 4th Edition. Chan, J. M., J. C. Walker, C. A. Raymond (2011) Effects of moisture content and temperature on acoustic velocity and dynamic MOE of radiata pine sapwood boards. Wood Science and Technology. 45(4):609–626. Csoka L, J. Zhu and K. Takata (2005) Application of the Fourier analysis to determine the demarcation between juvenile and mature wood. Journal of Wood Science. 51: 309–311. Erwin, S. Takemoto, W. J. Hwang, M. Takeuchi, T. Itoh and Y. Imamura (2008) Anatomical characterization of decayed wood in standing light red meranti and identification of the fungi isolated from the decayed area. J Wood Sci. 54:233–241. Goodell, B., D. D. Nicholas and T. P. Schultz (2003) Wood deterioration and preservation: advances in our changing world. American Chemical Society. Hasan A. R., L. Hub, H. M. Solo–Gabriele, L. Fieber, Y. Cai and T. G. Townsend (2010) Field–scale leaching of arsenic, chromium and copper from weathered treated wood. Environmental Pollution. 158:1479–1486. Hasegawa, M., M. Takata, J. Matsumura and K. Oda (2011) Effect of wood properties on within–tree variation in ultrasonic wave velocity in softwood. Ultrasonics. 51:296–302. Haygreen, J. G. and J. L. Bowyer (1996) Forest Products and Wood Science. Iowa State University Press, USA. Johnstone, D., P. Ades, G. M. Moore and I. W. Smith (2010) Using an IML–Resi drill to assess wood density in Eucalyptus globulus subsp. Pseudoglobulus. Australian Forestry. 74( 3):190–196. Kahl, T., C. Wirth, M. Mund, G. Bohnisch and E. D. Schulze (2009) Using drill resistance to quantify the density in coarse woody debris of Norway spruce. European Journal of Forest Research. 128:467–473. Kakitani, T., T. Hata, T. Kajimoto, and Y. Imamura (2004) Two possible pathways for the release of arsenic during pyrolysis of chromated copper arsenate (CCA)-treated wood. Journal of Hazardous Materials. 113:247–252. Katz, S. A. and H. Salem (2005) Chemistry and toxicology of building timbers pressure-treated with chromated copper arsenate: a review. Journal of Applied Toxicology. 25:1–7. Kojima, Y. and K. Adachi (2015) Establishment of evaluation method for durability of wood–based materials breakthroughs and future development. Journal of the Japan Wood Research Society. 61(3):178–185. Lee, C. J., S. Y. Wang and T. H. Yang (2011) Evaluation of moisture content changes in taiwan red cypress during drying using ultrasonic and tap–tone testing. Wood and Fiber Science. 43(1):57–63. Lin, C. J., S. Y. Wang, F. C. Lin and C. M. Chiu (2003) Effect of moisture content on the drill resistance value in taiwania plantation wood. Wood and Fiber Science. 35(2). Liu, H., J. M. Gao, Y. Chen and Yi Liu (2014) Effects of Moisture Content and Fiber Proportion on stress wave velocity in cathay poplar (Populus cathayana) Wood. BioResources. 9(2):2214–2225. Machek, L., M. L. Edlund, R. S. Alvarez and H. Militz (2004) A non–destructive approach for assessing decay in preservative treated wood. Wood Science and Technology. 37:411–417. Morales–Conde, M.J., C. R. Liñána and J. S. Machado (2014) Predicting the density of structural timber members in service. Thecombine use of wood cores and drill resistance data. Materiales de Construcción. 64(315). Oliveira, F. G. R. de, M. Candianb, F. F. Lucchetteb, J. L. Salgonb and A. Salesb (2005) A technical note on the relationship between ultrasonic velocity andmoisture content of Brazilian hardwood (Goupia glabra). Building and Environment. 40 :297–300. Sakaia, H., A. Minamisawa, K. Takagia (1990) Effect of moisture content on ultrasonic velocity and attenuation in woods. Ultrasonics. 28(6):382–385. Schultz, T. P. and D. D. Nicholas (2011) A proposed accelerated field stake test for rapid assessment of wood preservative systems. Holzforschung. 64: 673–679. Schultz, T. P., D. D. Nicholas, H. Militz, M.H. Freeman and B. Goodell (2008) Development of commerical wood preservative : efficacy, environmental, and health issues, 1st edition. American Chemical Society. Schultz, T. P., D. D. Nicholas, W. P. Henry, C. U. Pittman, D. O. Wipf and B. Goodell (2005) Review of laboratoryand outdoor exposure efficacy results of organic biocide: antioxidant combinations, an initial economic analysis and discussion of a proposed mechanism. Wood and Fiber Science. 37(1): 175–184. Skinner, F. A., P. C. T. jones and J. E. Mollison (1952) A comparison of a direct– and a plate–counting technique for the quantitative estimation of soil micro–organisms. J. gen. Microbiol. 6:261–271. Stirling, R., J. Drummond, J. Zhang, and R. J. Ziobro (2008) Micro–Distribution of Micronized Copper in Southern Pine. IRG/WP. 08–30479. Wang, S. Y. and K. N. Chen (1992) Effects of plantation spacings on tracheid lengths, annual-ring widths, and percentages of latewood and heartwood of Taiwangrown Japan cedar. Mokuzai Gakkaishi. 38: 645–656. Yamasaki, M., and Y. Sasaki (2010) Determining Young's modulus of timber on the basis of a strength database and stress wave propagation velocity I: an estimation method for Young's modulus employing Monte Carlo simulation. J Wood Sci. 56:269–275. Yamasaki, M., Y. Sasaki, and Y. Iijima (2010) Determining Young's modulus of timber on the basis of a strength database and stress wave propagation velocity II: effect of the reference distribution database on the determination. J Wood Sci. 56:380–386. Yang, T. H., S. Y. Wang and C. J. Lin (2006) Properties and grading of plantation lumber using nondestructive techniques in Taiwan. The Japan Wood Research Society 56th Annual Meeting. Yin, Y., H. Nagao, X. Liu, and T. Nakai (2010) Mechanical properties assessment of Cunninghamia lanceolata plantation wood with three acoustic–based nondestructive methods. J Wood Sci. 56:33–40.
摘要: 
木質生態工程多用做邊坡防治或蝕溝治理,在接觸地面之情況下易受到生物性降解而損失結構強度,因此會預先對木材進行防腐處理,而防腐處理之成效影響其日後之耐腐朽性。為了解木質生態工程長時間使用於戶外環境時之強度變化,本研究利用非破壞檢測技術和微破壞檢測技術做為評估木質生態工程之手段,並利用含水率-音速值和鑽孔抵抗值-密度之公式計算動彈性模數,探討各參數間之相關性並比較不同藥劑留存量之強度,最後利用戶外劣化試驗結果推估木質生態工程之耐久年限,計算其二氧化碳排放率。
  結果顯示,超音波波速和應力波波速隨目視評級增加而有下降之趨勢;Pilodyn刺入深度隨目視評級增加而有上升之趨勢,微壓縮強度和鑽孔抵抗值則隨目視評級增加而有下降之趨勢;隨超音波音速和應力波音速的上升,Pilodyn刺入深度隨之下降、微壓縮強度與鑽孔抵抗值隨之上升;Pilodyn刺入深度與微壓縮強度和鑽孔抵抗值呈負相關。在利用含水率-音速值和鑽孔抵抗值-密度之公式計算動彈性模數後,校正後之動彈性模數與微破壞檢測之相關性大幅上升,應力波動彈性模數和超音波動彈性模數後對微壓縮強度之決定係數上升至0.78和0.79,顯示利用非破壞檢測搭配鑽孔阻抗儀和含水率計,可以有效評估木質材料的強度性質。柳杉未乾燥即進行注入時,藥劑自30 cm處開始即有滲透不良之情形發生,中央圓盤之平均藥劑滲透度僅為15%。柳杉乾燥後注入防腐藥劑,其藥劑滲透度因與端部距離增加而降低,中央圓盤之平均藥劑滲透度為75%。經由八面壓縮處理後,不論圓盤位置,其藥劑滲透度皆可達95%以上。而八面壓縮處理和使用之防腐藥劑不影響其強度性質。經由藥劑留存量與微壓縮強度之檢測後發現,防腐藥劑處理不良時,劣化兩年後之微壓縮強度會衰減26.4%,而K4危害分級防腐處理材僅衰減6.9-13.7%。利用超音波音速法評估戶外劣化前後之壓縮強度關係,可以發現其決定係數R2達0.91,顯示可超音波法評估壓縮強度。而彙整長期監測之結果發現,K3處理之ACQ校倉式擋土牆於27個月時音速值衰減32.6%,於24.8個月時其衰減達原始值之50%。藉由鑽孔抵抗值計算密度,比較K3危害分級和K4危害分級防腐處理生態工程後發現,K3危害分級處理之材料釋放50%之CO2時,K4危害分級處理材料之CO2排放量僅約為K3危害分級之25%。針對木質生態工程木構件之材質評估,建議以鑽孔抵抗儀作為健全程度之評估方式,再以超音波法評估縱向音速值,並利用含水率公式校正後即可有效評估木構件之實際強度。

Ecological engineering is used as slope control or gully control. In case of losing structural strength, preservation is treated to prevent degradation while contacting the ground. In this study, using nondestructive method and micro-destructive method to evaluate the strength of long-term use of wood ecological engineering. And by using moisture – velocity and density – drilling resistance value adjustments formula, to investigate the correlation between the various parameters, long-term degradation and carbon dioxide emission rates.
Results indicated that ultrasonic velocity and stress wave velocity decreases with visual grading imcreases; Pilodyn penetration depth increased with the visual rating, micro-compressive strength and the drilling resistance value is increased with the visual gating has dropped. With sonic and ultrasonic velocity increased, Pilodyn penetration depth fall slightly, and micro-compressive strength and the drilling resistance value rise. After using moisture – velocity and density – drilling resistance value adjustments formula, adjustments dynamic elasticity modulus (DMOEadj) show a highly correlated between DMOEadj and micro-compressive strength,which are respectively 0.78 and 0.79 for stress wave of DMOE and ultrasonic wave of DMOE. It's showing that nondestructive method can effectively assess the strength properties of wood materials.When Japanese cedar is treated preservative before drying, it's shows a low penetration (15%) from the edge. After drying, it increased to 75% of the center disc. After compressing processing, penetration of all disc are more than 95%. And after compression test, The compression processing does not affect the strength properties. After evaluating preservative retention and micro-compressive strength, it will decrease 26.4% of micro-compress strength in 2 years owing to poor treated. And with good treatment, K4 grade of micro-compression strength decreases only 6.9-13.7%. Evaluate the relationship between the compressive strength after 2 years of outdoor degradation; the R2 between ultrasonic wave is 0.91. It's show that using ultrasonic wave can evaluate the compressive strength. Caculate the results of long-term experiment, wood members used in ecological engineering will decrease 32.6% of velocity after 27 month with K3 level treatment. After 24.8 month, it will decrease 50% of velocity. By using drilling resistance value calculating desity, when carbon dioxide emission rates of K3 level treatment is 50%, it's 25% of K4 level at the same condition. Recommending of evaluate sound level of ecological engineering by using drilling resistance, and evaluating the longitudinal ultrasonic velocity with adjustments of moisture – velocity and density – drilling resistance value adjustments formula to assess the actual strength.
URI: http://hdl.handle.net/11455/89313
其他識別: U0005-2708201512281200
Rights: 同意授權瀏覽/列印電子全文服務,2015-08-28起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7100033028-1.pdf7.25 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.