Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89373
標題: Relationship between rainfall return period and landslide characteristics in a watershed
集水區降雨重現期距與崩塌特性關係之研究
作者: 陳垣榮
Yuan-Jung Chen
關鍵字: 重現期距;崩塌規模;崩塌區位;近岸崩塌;離岸崩塌;Return period;Collapse scale;Spatial distribution of landslides;Near-riverbank;Off-riverbank
引用: 1.水土保持學會(1992),「水土保持手冊-工程篇」,台灣省水土保持局暨中華水土保持學會。 2.朱健銘(2000),「土地利用空間型態之研究」,國立臺灣大學地理學研究所碩士論文。 3.李國忠(1996),「賀伯颱風災情與山坡地利用」,從賀伯颱風災害探討公共工程之規劃研討會。 4.李三畏(1984),「台灣崩塌問題探討」,地工技術,7:43-49。 5.李介中(2005),「碎形理論應用於臺灣地區建地空間型態之研究」,國立臺灣大學地理學研究所碩士論文。 6.李依紋(2012),「SuperGIS生物多樣性分析模組應用理論介紹,Geographic Information System」,地理資訊系統季刊,6(2)。 7.成大衛星資訊研究中心(1999),「衛星遙測原理」,衛星遙測與農業經營、環境保護簡報。 8.吳治達、鄭祈全、莊永忠、詹進發(2013),「應用航測技術與Markov模式探討石門水庫集水區之土地利用動態」,航測及遙測學刊,16(4):289-297。 9.林昭遠、林家榮、鄭旭涵、劉昌文(2006),「石門水庫集水區艾利颱風土砂災因之探討」,中華水土保持學報,37(4):327-336。 10.林昭遠、莊智瑋(2009),「921地震崩塌地特性及變遷監測分析」,921地震對生態影響與回復研討會。 11.林昭遠、張鑫崴、傅桂霖(2013),「阿里山溪集水區源頭崩塌機制之探討」,2013森林集水區經營研討會論文集。 12.林銘郎(1992),「河谷解壓節理的研究:以太魯閣大理岩峽谷為例」,國立臺灣大學土木工程研究所博士論文。 13.林伯勳、許振崑、陳建宏、冀樹勇、邱世宜、鍾啟榮、王晉倫(2011) 「石門水庫集水區土壤厚度經驗式探討」,水保技術,6(2):98-109。 14.林世峻、莊智瑋、何世華、林昭遠(2008),「植生指標對影像分類準確度影響之研究」,水土保持學報,40(2):181–193。 15.周朝富、鄭祈全、陳燕章(1991),「SPOT資料應用於林地被覆型之分類研究」,林業試驗所研究報告季刊,6(3):283-297。 16.胡淑惠,2012,「航遙測技術於崩塌地判釋上之應用」,農政與農情,第245期。 17.徐義人,1995,「應用水文學」,國立編譯館出版,大中國圖書公司發行。 18.崔懷芝(2007),「量表信度的測量:kappa統計量之簡介」,生統E報,第11期。 19.張伯宇(1997),「賀伯颱風之水土災害類型分析及其成因探討」,地景保育通訊,5:7-11。 20.張明倫(2007),「濁水溪潛在揚塵發生區位劃定與揚塵防治對策之研究」,國立中興大學水土保持學系碩士論文。 21.翁培文、蔡博文(2006),「空間離散指標:舊觀念、新公式」,台灣地理資訊學刊,4:1-12。 22.黃文仁、徐弘明、許中立(2010),「倒傳遞類神經網路法模擬崩塌滑移特性」,坡地防災學報,9(1):33-42。 23.黃麗娟(2007),「植生指標應用於土地利用分類判釋之研究」,國立中興大學水土保持學系碩士論文。 24.黃宏斌(1991),「土石流之發生模式探討」,中國農業工程學報,37(4):35-47。 25.郭佳韋(2013),「自然斜坡土壤深度推估方法探討」,國立中央大學應用地質研究所碩士論文。 26.葉怡成(2003),「類神經網路模式應用與實作」,儒林圖書公司,修訂八版。 27.陳榮河(2001),「桃芝颱風造成之土石流災害」,中華民國大地工程學會會訊,5(2)。 28.陳振宇(2009),「莫拉克颱風土石流防災應變及警戒措施」,農政與農情,第207期。 29.陳樹群、吳俊毅、謝政道(2012),「崩塌危害分析模型之建立─以臺北水源特定區為例」,中華水土保持學報,43(4):332-345。 30.陳樹群、陳少謙、吳俊鋐(2012),「南投縣神木集水區崩塌特性分析」,中華水土保持學報,43(3):214-226。 31.陳聯光、林聖琪、林又青、王俞婷、林祺岳、陳如琳(2010),「莫拉克颱風降雨與崩塌分佈特性探討」,2010年中央氣象局天氣分析與預報研討會。 32.詹錢登(2000),「土石流概論」,科技圖書股份有限公司出版。 33.楊明德、林暐翔、黃凱翔、張益祥(2011),「極端降雨下之崩塌潛勢分析-以陳有蘭溪為例」,2011年台灣地理資訊學會年會暨學術研討會。 34.葉家承、徐百輝、張子瑩(2015),「應用空間資料探勘技術於致災因子初探:以濁水溪流域之崩塌地為例」,國家災害防救科技中心災害防救電子報,114:1-17。 35.蔡政衛(2003),「台灣集水區乾旱特性及其頻率分析之探討」,國立成功大學水利及海洋工程學系碩士班論文。 36.蔡明君(2008),「以降雨特性研究阿里山公路邊坡崩塌預警管理」,成功大學土木工程學系碩士論文。 37.鄭子璉、周乃昉(2001),「高度平衡多邊形法之幾何計算」,中國土木水利工程學刊,13(4):735-746。 38.鄭祈全、詹進發、許立達(1999),「應用碎形維度監測森林地景結構與變遷之研究」,台灣林業科學,14(4):397-407。 39.穆婧、林昭遠(2013),「集水區崩塌地環境指標分析與崩塌潛感推估」,中華水土保持學報,44(2):121-13。 40.蕭震洋,謝寶珊,林伯勳,鄭錦桐(2009),「遙測影像之物件導向自動化判釋崩塌地於石門水庫集水區的應用實例」,中國地球物理學會與中華民國地質學會98年年會暨學術研討會論文摘要集。  1.Antrop, M. (1998). 'Landscape change: Plan or chaos?' Landscape and Urban Planning, 41(3–4), 155-161. 2.Cain, S.A., (1938) 'The species-area curve,' American Midland Naturalist, 19: 573 – 581. 3. Heimsath, A.M., Dietrich, W.E., Nishiizumi, K., Finkel, R.C., (1997), 'The soil production and landscape equilibrium,' Nature, 388: 358-361. 4.Khazai, B., Sitar, N., (2000), 'Landsliding in Native Ground: A GIS-Based Approach to Regional Seismic Slope Stability Assessment,' Internet Report. 5.Jensen, J.R., (1996), 'Introductory digital image processing—a remote sensing perspective,' Prentice Hall, P. 234-250. 6.McGarigal, K., Marks, B., (1995), 'FRAGSTATS: spatial pattern analysis program for quantifying landscape structure,' U.S, Forest Service General Technical Report, PNW-GTR-351. 7.Preston, F.W.,(1948), 'The canonical distribution of commonness and rarity,' Ecology Society of America, 43(2):185-215 8.Saunders, S. C., Mislivets, M. R., Chen, J., Cleland, D. T., (2002). 'Effects of the Northern Great Lakes,' USA. Biological Conservation, 103: 209-225. 9.Sim J, Wright, C. C., (2005), 'The kappa statistic in reliability studies: use, interpretation, and sample size requirements.' Phys Ther, 85(3): 257–268. 10.Zhou, G., Esaki, T., Mitani, Y., Xie, M., Mori, J., (2003), 'Spatial probabilistic modeling of slope failure using integrated GIS Monte Carlo simulation approach,' Engineering Geology, 68: 373-386.
摘要: 
過去研究對崩塌現象之發生,常歸咎於極端降雨及地質條件,卻未能解釋鄰近相似條件之區位未發生災害之現象。崩塌發生事件常與規模成反比,因此邊坡發生崩塌之機率及其規模宜有區隔,集水區邊坡崩塌除立地條件不同外,主要可歸納為近岸及離岸崩塌,近岸崩塌主要受逕流;離岸崩塌則受降雨強度所影響,不同區位不僅誘發的機制不同,規模大小也有所差異,故集水區降雨重現期距與崩塌特性關係亟待探討。
本研究以陳有蘭溪集水區為樣區,選取受災較為嚴重之賀伯、桃芝及莫拉克等三場颱風事件,推估其降雨事件之重現期距及萃取新增崩塌區位,另以地形及土地利用將崩塌發生區為分為源頭、河道、道路及農墾地等四類,針對集水區於不同降雨重現期距下,探究崩塌區位與規模之空間分布及趨勢關係。
結果顯示三場事件雖單日降雨強度相近,重現期距卻以賀伯颱風之100年為最大,其次為桃芝颱風60年及莫拉克颱風24年,以賀伯颱風所造成之崩塌面積及量體最大,可見崩塌規模主要影響因子為降雨重現期距。三場事件中集水區重複崩塌個數僅佔總崩塌個數之10%,河道之近岸重複崩塌個數為67.88%最高,離岸之源頭、道路以及農墾地之重複崩塌個數為33.22%;而近岸之重複崩塌面積崩塌約80%,離岸重複崩塌面積僅20%,此現象說明集水區極端降雨所造成之崩塌類型多屬新生之崩塌,且極端事件之降雨重現期距為推估崩塌及規模潛勢之重要指標。

Previous studies on the collapses indicated that the weak geology condition and extreme rainfall are the main reasons of landslide. However, it was unable to explain the neighboring non-failure site, which the similar geological condition. Frequency of landslide event is always inversely proportional to the landslide scale, and therefore return period and scale should be distinguished. In addition, landslides in the watershed could be categorized by the occurrence locations i.e. near-riverbank and off-riverbank landslide, which are not only caused different mechanism but also different landslide scale. Near-riverbank landslides are mainly affected by a stream, whereas off-riverbank landslides are usually influenced by rainfall intensity. Thus, the relationship between the collapse location characteristics and different rainfall return periods is relatively important to explore.
Chen-You-Lan watershed was selected as the study area due to numerous landslides. The events of Typhoon Herb, Toraji and Morakot, which caused more serious disasters, were selected to estimate rainfall return period and extract the each newly collapses. According to the terrain and land use of landslide sites, the collapse sites can be classified as headstream, river, road and cultivation categories. In addition, the spatial distribution and trend relationships for the collapse site and the correspondent scale were also well discussed under the different return periods.
The results showed that rainfall return period of the selected events is quite different although the rainfall intensity is similar. Typhoon Herb has the highest return period (100-yr) followed by Typhoon Toraji (60-yr) and Typhoon Morakot (24-yr), respectively. Typhoon herb also caused the largest amount of collapse area and volume, which implies the noticeable factor for the collapse scale is rainfall return period. There were only 10% of the recurrent landslides occurred during the tested Typhoon events. It was found that there are about 67.88% and 33.22% recurrent landslide occurred at the sites of near-riverbank and off-riverbank respectively. There exists an 80% of collapse areas occurred at near-riverbank and 20% of that happened at the off-riverbank. This phenomenon indicated that the extreme rainfall event could trigger most of new born landslides in the watershed, and the return period of an extreme event could be used as effective indicator to estimate the potential collapse and its scale.
URI: http://hdl.handle.net/11455/89373
其他識別: U0005-2108201519344800
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-25起公開。
Appears in Collections:水土保持學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102042032-1.pdf6.51 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.