Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89384
標題: Woody Debris And Sediment Trapping Efficiency Of Three Types Check Dams Experimental Analysis
三種防砂壩攔阻漂流木及土砂效率分析
作者: 黃揮凱
Hui-Kai Huang
關鍵字: 鋼管壩;土砂攔阻效率;可拆卸式橫桿;Modular steel check dam;sediment trapping efficiency;removable transverse beam
引用: 1. 王圍穩(2009),「壩體移除對河床變化之實驗研究與鋼管壩之鋼構安定分析」,國立中興大學水土保持學系碩士論文。 2. 王啟榮(2010),「漂流木初始運動機制之實驗研究」,國立中興大學水土保持學系碩士論文。 3. 行政院農業委員會水土保持局(2014),「水土保持手冊」,工程方法篇,工-2-1。 4. 吳永勝(2010),「防砂壩囚砂效益及拆壩策略之研究」,國立中興大學水土保持學系碩士論文。 5. 陳樹群、安軒霈(2006),「透水攔淤防砂壩對細顆粒泥砂之囚砂特性研究」,行政院農業委員會水土保持局。 6. 黃育珍、李錦浚、李元智(2007),「混凝土梳子壩攔阻功效之研究」,水土保持學報,39(1),111-126。 7. 魯聲睿(2012),「鋼製梳子壩之囚砂與排砂效益」,國立中興大學水土保持學系碩士論文。 8. 趙益群(2006),「孔隙型防砂壩對細顆粒泥砂囚砂效果之研究」,國立中興大學水土保持學系碩士論文。 9. 水山高久、下東久巳、下田義文、井戶清雄(1984),「有砂防関実験的研究」,水理講演会論文集,第28回,723-728。 10. 水山高久、鈴木宏、及川義朗、森田昭宏(1988),「透過型砂防関実験的研究」,新砂防,41(2),21-25。 11. 水山高久、小橋澄治、水野秀明(1995),「格子型流砂量減少率関研究」,新砂防,47(5),8-13。 12. 池谷浩、上原信司(1979),「砂防土砂調節?果関実験的研究」,新砂防,32(3),37-44。 13. 長谷川祐治、小田晃、阿部彥七、水山高久(2003),「透過型砂防堰堤堰上限界関実験的研究」,砂防学会誌,55(6),68-73。 14. 芦田和男、江頭進治、栗田三津雄、荒牧浩(1987),「透過性砂防土石流調節機構」,京都大学防災研究所年報,30(B-2),441-456。 15. 砂防・地技術(2009),「鋼製砂防構造物設計便覽」。 16. 渡辺正幸、水山高久、上原信司(1980),「土石流対策砂防施設関検討」,32(5),40-45。 17. 廣島縣土木建築部防砂課(1996),「砂防技術指針-設計事例編」,pp. 92-94。 18. Armanini, A., and Larcher, M. (2001). 'Rational criterion for designing opening of slit-check dam.' J. Hydraul. Eng., 127(2), 94-104. 19. Ashida, K. and Takahashi, T. (1980). 'Study of debris flow control: Hydraulic function of grid type open dam.' Annuals. Disaster Prevention Res. Inst., Kyoto Univ., 23(2), 433–441 20. Ashida, K. Egashira, S. Kurita, M and Araki, H. (1987). 'Debris flow control by grid dams. ' Annuals. Disaster Prevention Res. Inst., Kyoto Univ., 30(2), 441–456 21. Braudrick, C.A., Grant, G.E., Ishikawa, Y., Ikeda, H. (1997) 'Dynamics of wood transport in streams: a flume experiment,' Earth Surface Processes and Landforms, 22: 669~683. 22. Bocchiola, D., Rulli, M. C., Rosso, R. (2006), 'Transport of large woody debris in presence of obstacles,' Geomorphology, 76: 166~178. 23. Catella M. Paris E. and Solari L., 2005, 'Case study: Efficiency of slit-check dams in the mountain region of Versilia Basin,' Journal of Hydraulic Engineering, ASCE, 131(3), 47-154. 24. Doyle, M. W., Stanley, E. H., and Harbor, J. M. (2003). 'Channel adjustments following two dam removals in Wisconsin.' Water Resources Research, 39(1), 1011. 25. Lane, E. W. (1955). 'The importance of fluvial morphology in hydraulic engineering.' Proc., ASCE, 745(81), 1-17. 26. Mizuyama, T. (2008). 'Sediment hazards and SABO works in Japan.' International Journal of Erosion Control Engineering, 1(1), 1-4. 27. Matsumura, K., Takahara T. (2008) 'Experimental study of the sediment trap effect of steel grid-type sabo dams.' International Journal of Erosion Control Engineering, 1(2),73-78. 28. Nakano, H., Kasai, S., Moriyama, H., and Mizuno, M. (2003). 'Safer and more economical steel sabo dam designs.' Kobe Steel Engineering Reposts, 53(1), 86-90. 29. Ono, G. I., Mizuyama, T., and Matsumura, K. (2004). 'Current practices in the design and evaluation of steel sabo facilities in Japan.' Internationales Symposion INTERPRAEVENT 2004 – RIVA/TRIENT, VII/253-264. 30. Wehrmann, H., Hübl, J., Holzinger, G. (2006), 'Classification of Dams in Torrential Watersheds,' Debris-Flow Disaster Mitigation Technique and Practice in Austria and Taiwan.
摘要: 
臺灣傳統土石流防治工法,以全封閉式壩與梳子壩為主,本研究探討鋼管壩、梳子壩、全封閉式壩三種壩體對於礫石及漂流木之能力何者較佳,全封閉式壩體雖然可以攔阻大部分的礫石及流木,但壩體淤滿後並失去其功能,而梳子壩為透過性壩體,雖然可避免短時間淤積過量,但台灣土石流頻繁發生,連續土石流時水流挾帶大量土石躍過壩體,對下游保護對象造成危害。鋼管壩改良了梳子壩難以改變的缺點,其縱材及橫材皆可自由拆卸,藉由不同的組裝方式可適用於不同環境。
本研究在南投惠蓀林場蘭島溪二號橋上游,設置實體鋼管壩,進行粒徑調查,並利用幾何相似定律進行模型及礫石之縮比,以符合室內渠槽實驗之大小。本研究著重在三種壩體對於漂流木及礫石混合漂流木攔阻能力與機制之分析,並且比較鋼管壩在橫桿拆卸的情形下攔阻率之變化,本研究先以相同流量探討三種壩體對於漂流木攔阻效率及機制,再以不同體積率之漂流木進行礫石與流木攔阻實驗,透過實驗影像及實驗數據進行分析。
本研究之實驗結果顯示三種壩體皆能將礫石與流木攔阻下來,鋼管壩與梳子壩皆可藉由流木間的互相卡合使整體停止,而鋼管壩之攔阻率約比梳子壩高30%;當漂流木數量增加10%時,梳子壩及鋼管壩之攔阻率上升2~10%,但全封閉式壩則無顯著影響;鋼管壩拆除橫桿後礫石攔阻率降低且壩體內部堆積率上升10%,從實驗結果可得知鋼管壩底部間距大小影響攔阻率與堆積率,故在未來可視實際泥沙變化趨勢調整鋼管壩底部間距以穩定河床。

The traditional debris flow control engineering is using closed-type check dam and slit check dam in Taiwan. To explore trapping efficiency this study divide check dams into three types as closed-type check dam, slit dam, and modular steel check dam. Closed-type check dam which can trap all kind of sediment or driftwood. However closed-type check dam which trap all kind of sediment is usually full and losing its ability of trapping after flood. Slit check dam is permeable dam, so it can prevent from depositing all of sediment in a short time. However, in recent years, the deposition of slit check dam may cross over the dam with flow. A modular steel check dam improves the existing hard-to-change disadvantages of slit dam structure. The assembling of longitudinal and transverse beams can be constructed independently, and then it could be freely configured to form a flexibly adjustable modular steel check dam.
This study used the laws of geometric similitude to design model of dam and experimental boulders at Lan-Dow river. The main comparisons focused on the trapping mechanisms of woody debris of three types check dams and compared the deposition rate of modular steel check dam with removable transverse beams. To explore the trapping efficiency of three types check dams this study conduct experiment with same discharges. This study analysis the deposition rate of debris flow in different volume rate of driftwood through the image of experiment.
As a result, slit check dam and modular steel check dam could trap boulders and stop debris flow by arched stacking efficiency. The sediment deposition rate of the modular steel check dam increase 30% than slit check dam. When the volume of driftwood increase 10% the sediment deposition rate of slit check dam and modular steel check dam increased 2~10%. The deposition rate in modular steel check dam increased 10% without transverse beams. Finally this study showed that the interval between the lower transverse beam and flume bed affected the sediment deposition rate, we can construct the modular steel dam according requirement in the future.
URI: http://hdl.handle.net/11455/89384
其他識別: U0005-0508201514590800
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-19起公開。
Appears in Collections:水土保持學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102042013-1.pdf5.95 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.