Please use this identifier to cite or link to this item:
標題: Mechanical and deformation analyses of pile foundation for supporting structure of off-shore wind turbine at Changhua coast in Taiwan
作者: 黃智民
Jhih-Min Huang
關鍵字: 離岸風機;樁基礎;三維有限元素程式;p-y曲線;承載特性;極限承載力包絡線;長徑比;打設間距比;offshore wind turbine;pile foundation;three-dimensional finite element program;p-y curve;bearing capacity behaviors;ultimate bearing capacity envelopes;pile length/pile diameter ratios;pile spacing ratios
引用: 1.Abdel-Rahman, K. and Achmus, M. (2005), Finite Element Modelling of Horizontally Loaded Monopile Foundations for Offshore Wind Energy Converters in Germany. International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Perth, Australia, Taylor & Francis, London, 309-396. 2.Aliasger Haiderali and Gopal Madabhushi (2012), Three-Dimensional Finite Element Modelling of Monopiles for Offshore Wind Turbines. The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM' 12), Seoul, Korea, August 26-30, 2012. 3.American Petroleum Institute (API) (2000), Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design. API Recommended Practice 2A-WSD (RP2A-WSD), 21st edition, Washington DC. 4.Bhattacharya, S., Wood, D.M., and Lombardi, D. (2011), 'Similitude relationships for physical modelling of mono pile-supported offshore wind turbines.' International Journal of Physical Modelling in Geotechnics, Vol.11, No.2, pp. 58-68. 5.Bowles J. (1992), Engineering properties of soil and their measurements. 4th edition, McGraw-Hill, Boston, MA. 6.Broms, B. (1965), 'Design of laterally loaded piles.' Journal of Soil Mechanics and Foundation Division, ASCE 91, No. SM3, 79-99. 7.Brown, D.A. and Shie, C.F. (1990). 'Numerical experiments into group effects on the response of piles to lateral loading.' Computers and Geotechnics, 10 (3): 211-230. 8.Budhu, M.,(2000), 'Soil Mechanics and Foundations', Wiley, pp. 84-89. 9.Byrne, B.W. and Houlsby, G.T. (2003), 'Foundations for Offshore Wind Turbines.' Philosophical Transactions of the Royal Society of London, Series A, Vol. 361, December, pp. 2909-2930. 10.Coduto, D. P. (1994). Foundation Design, Principles, and Practices. Prentice-Hall, Englewood Cliffs, N.J., 796 pp. 11.Coyle, H. M., and Castello, R. (1981), 'New Design Correlations for Piles in Sand.' Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT 7, pp. 965-986. 12.Das, Braja M., (2011), Principles of Foundation Engineering, 7th edition, Thomson, Toronto. Vries W. E., and van der Tempel J. (2007), Quick Monopile Design. Proceedings, European Offshore Wind Conference, Berlin, Germany.  14.Design Manual 7.2. (1982), Foundation and earth structures. US Navy, Washington, DC. 15.Det Norske Veritas (DNV) (2004), Design of Offshore Wind Turbine Structures, Offshore Standard DNV-OS-J101, Jun 2004. 16.Duncan, J.M., Chang, C.Y. (1970), Nonlinear Analysis of Stress and Strain in Soils. Journal of Soil Mech, Fdns Div., ASCE, Vol. 96, No. SM 5, pp. 1629-1653. 17.Dunham, J.W. (1954), 'Pile Foundations for Buildings.' Proc. ASCE, Soil Mechanics and Foundation Division. 18.Dunnavant, T.W. and O'Neill, M.W. (1989), 'Experimental p-y model for submerged stiff clay.' Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 1, pp. 95-114. 19.Germanischer Lloyd (GL) (2010), 'Guideline for the Certification of Wind Turbines.' Edition 2010, Hamburg, Germany. 20.Hammar, L., Andersson, S., and Rosenberg, R. (2010), Adapting offshore wind power foundations to local environment. translated by Dimming, A., Vindval report 6367, (Broma). 21.Hardin, B.O., Drnevich, V.P. (1972), Shear Modulus and Damping in Soils: Design Equations and Curves. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692. 22.International Electrotechnical Commission (IEC) (2005), Wind Turbines-Part 1: Design Requirements. International Standard: IEC 61400-1, Edition 3.0. 23.International Electrotechnical Commission (IEC) (2009), Wind Turbines-Part 3: Design Requirements for Offshore Wind Turbines. International Standard: IEC 61400-3. 24.International Organization for Standardization (ISO) (2003), Petroleum and Natural Gas Industries-Specific Requirements for Offshore Structures-Part 4: Geotechnical and Foundation Design Considerations. International Standard ISO 19901-4. 25.Janbu, N. (1963), Soil compressibility as determined by oedometer and triaxial tests. Proc. ECSMFE, Wiesbaden, 1:19-25. 26.Jeong, S., Kim, Y., and Kim, J., (2011), 'Influence on lateral rigidity of offshore piles using proposed p-y curves.' Ocean Engineering, Vol.38, pp.397-408. 27.Jonkman, J.M., Butterfield, S., Musial, W., and Scott, G. (2009), Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO, USA. 28.Kondner, R.L. (1963), A Hyperbolic Stress Strain Formulation for Sands. Proc. 2nd Pan American ICOSFE, Vol. 1, pp. 289-324, Brazil.  29.Kourkoulis R., Gelagoti F. and Kaynia A. (2012), Seismic Response of offshore wind turbine foundations. 15th World Conference on Earthquake Engineering, Lisbon, Portugal. 30.Krolis, V.D., van der Tempel, J. and de Vries, W. (2007), Evaluation of foundation design for monopile support structures for offshore wind turbines. European Offshore Wind Conference 2007, 7 pp., Germany. 31.Lesny, K. (2008), Foundations for offshore wind energy converters-Recommendations for concept and design. BAUTECHNIK, 85(8), 503-511. 32.Matlock, H. (1970). Correlation for Design of Laterally Loaded Piles in Soft Clays. Paper No. OTC 1204, Proceedings, Second Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp. 577-594. 33.Meyerhof, G.G. (1976), Bearing capacity and settlement of pile foundations, Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT3, pp. 195-228. 34.Murchison J.M., and O'Neill M.W. (1984), Evaluation of p-y relationships in cohesionless soils. Analysis and Design of Pile Foundations. Proceedings of a Symposium in conjunction with the ASCE National Convention, pp. 174-191. 35.Reese, L.C., Cox, W.R., and Koop, F.D. (1974), Analysis of Laterally Loaded Piles in Sand. Proceedings of the Fifth Annual Offshore Technical Conference, Vol. II, Paper OTC 2080, Houston, Texas, pp. 473-485. 36.Santos, J.A., Correia, A.G. (2001), 'Reference threshold shear strain of soil, its application to obtain a unique strain-dependent shear modulus curve for soil.' In Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 1, A.A. Balkema, Istanbul, pp. 267-270. 37.Schanz, T. and Vermeer, P.A. (1998), Special issue on pre-failure deformation behaviour of geomaterials. Geotechnique, 48, pp. 383-387. 38.Schmertmann, J.H., Hartmann, J.P. and Brown, P.R. (1978), Improved strain influence factor diagrams. Journal of the Geotechnical Engineering Division, ASCE, 104(8): 1131-1135. 39.Siegfriedsen, S., Lehnhoff M., and Prehn A. (2003), Primary markets for offshore wind energy outside the European Union, Wind Engineering, 27, pp. 419-429. 40.S?rensen, S.P.H., Br?dbaek, K.T., and M?ller, M. (2009), Evaluation of Load-Displacement Relationships for Large-Diameter Piles. Long Candidate Project, Aalborg University, Aalborg, Denmark. 41.Stavros Savidis, Ercan Taşan H. and Frank Rackwitz (2011), 'Numerical Investigation of Monopile Behavior due to Wind and Water Wave Loading.' Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, S. 3469-3475.  42.Supachawarote C., Randolph M.F. and Gourvenec S. (2004), 'Inclined pull-out capacity of suction caissons.' Proceedings of the 14th International Offshore and Polar Engineering Conference, Toulon, France. 43.TANG Xiao-wei, SHAO Qi and LIU Bing-xue (2011), 3D FEM analysis on bearing capacity behaviors of tri-piles foundation for offshore wind turbines. Multimedia Technology (ICMT), 2011 International Conference, IEEE, pp. 941-944. 44.Vesic, A.S. (1973), 'Analysis of ultimate loads of shallow foundations.' Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 99, No. SM1, pp. 45-73. 45.Vijayvergiya, V.N. and Focht, J.A. Jr. (1972), 'A new way to predict the capacity of piles in clay.' 4th Annual Offshore Technology Conference, Houston, Vol. 2, pp. 865-874. 46.Wu Ke, Chen Rong and Li Shucai (2009), Finite element modeling of horizontally loaded monopile foundation of large scale offshore wind turbine in non-homogeneity clay. [C], WRI World Congress on Software Engineering, 2:329-333. 47.丁紅岩、翟少華、張浦陽(2013),「海上風電大尺度頂承式筒型基礎承載力特性有限元分析」,工程力學,2013年06期,pp.124-132。 48.工研院綠能與環境研究所(2010),「台灣陸海域風能潛力評估」。 49.內政部營建署(2001),「建築物基礎構造設計規範」,營建雜誌社。 50.王志雲、王忠濤、欒茂田、王棟(2008),「吸力式沉箱基礎極限拉拔承載力的數值分析」,岩土力學,29(6):1545-1550。 51.王俊嶺、閆澍旺、霍知亮(2013),「複合載入模式下海上風機樁基礎破壞機制研究」勘察科學技術,2013年第1期。 52.交通部運輸研究所(2005),「港灣構造物設計基準修訂」,ISBN:986-00-0557-5。 53.朱斌、朱瑞燕、羅軍、陳仁朋、孔令剛(2010)「海洋高樁基礎水平大變位性狀模型試驗研究」,岩土工程學報,32(4):521-530。 54.朱斌、熊根、劉晉超、孫永鑫、陳仁朋(2013),「砂土中大直徑單樁水平受荷離心模型試驗」,岩土工程學報,35(10):1807-1815。 55.吳元康、王醴、林輝政、柯裕隆(2010),「國外離岸風場政策與簡介」,國科會能源國家型科技計畫之離岸風力主軸計畫。 56.林郁庭(2013),「以離心模型模擬離岸風機單樁受反覆水平側推之p-y曲線」,國立中央大學土木工程學研究所,碩士論文。 57.段鄖峰(2010),「海上風電場風機基礎的選型設計」,水利與建築工程學報,8(1):129-131,十堰市建設委員會。 58.范慶來、欒茂田(2010),「V-H-T荷載空間內海上風機桶形基礎破壞包絡面特性分析」,土木工程學報,43(4):113-118。  59.袁志林、段夢蘭、陳祥余、鐘超、王建國(2012),「水平荷載下導管架平台樁基礎的非線性有限元分析」,岩土力學,33(8):2551-2560。 60.張永利、周勇、李傑(2010),「東海大橋海上風電場基礎設計與分析」,四川建築科學研究,36(5):188-191,同濟大學土木工程學院。 61.張其一(2009),「複合載入模式下地基失效機制研究」,岩石力學學報,30(10):2940-2944。 62.閆澍旺、霍知亮、孫立強、劉潤(2013),「海上風電機組筒型基礎工作及承載特性研究」,岩土力學,34(7):2036-2042。 63.陳華兵、趙彥賢(2012),「S77 R70MT試驗風機基礎設計及施工」,水利水電工程設計DWRHE,31(1)。 64.廖南華(2003),「土壤經驗參數於數值分析之應用」,國立成功大學土木工程研究所,碩士論文。 65.榮冰、張嘎、王富強(2010),「響水海上風機群樁基礎變形特性的有限元分析」,岩土力學,31(2):470-474。 66.劉冰雪、唐小微(2009),「海上風機單樁基礎承載特性三維有限元分析」,大連理工大學,碩士學位論文。 67.劉潤、王磊、丁紅岩、練繼建、李寶仁(2014),「複合加載模式下不排水飽和軟黏土中寬淺式筒型基礎地基承載力包絡線研究」,岩土工程學報,36(1):146-154。 68.劉潤、陳廣思、劉禹臣、徐余(2013),「海上風電大直徑寬淺式筒型基礎抗彎特性分析」,天津大學學報(自然科學與工程技術版),46(5):393-400。 69.賴瑞應、張權、薛強、顧承宇、曾韋緐、徐偉誌、翁健煌、蔡勇賢(2012),「港灣構造物耐震性能設計架構之研究(2/4)」,交通部運輸研究所,臺北。 70.簡連貴、蕭松山、楊文昌、黃偉柏、江允智(2014),「離岸式風力發電海事工程規劃設計與施工規範之研究」,科技部研究計畫,基隆。 71.簡連貴、顧承宇、林德貴(2014),「離岸風機支撐結構基礎工程設計技術開發委託研究案」,行政院原子能委員會委託研究計畫,國立臺灣海洋大學。 72.鐘超、毛東風、段夢蘭、李志剛、袁志林、王建國(2013),「考慮樁基弱化的導管架平台橫向振動特性試驗研究」,岩土力學,34(1):53-60。
本研究針對台灣彰化濱海風場場址,依據載重試算分析結果,選用E-E'土層剖面作為分析剖面。並透過三維有限元素程式Plaxis 3-D,來探討離岸風機支撐結構樁基礎之承載特性及其力學變形行為。首先,依據離岸風場之海床鑽探資料(土壤統一分類法及標準貫入試驗SPT-N值),來推估數值模型所需之土壤材料參數。參考國際離岸風機支撐結構樁基礎之設計案例及載重規範,可決定風場場址之組合載重,並初步設計適合場址之樁基幾何尺寸。其次,進行室內兩組單樁模型試驗數值模擬,並比對模擬結果及量測成果之吻合度。由比對結果得知,單樁之水平載重~水平位移關係曲線(H~h曲線)、樁身水平位移及彎矩分布之模擬值與量測值相當吻合。另外,採用莫爾-庫倫土壤模式(MC-Model)及埋置樁(embedded beam)結構元素,來模擬土層與樁基承受水平載重之樁/土互制行為非常適宜及並可獲得滿意之結果。
隨之,建立離岸風機單樁及群樁之三維數值模型,並模擬樁基礎在承受各種組合載重作用下,土壤與樁基之互制力學行為。在數值模型中,選用不同樁徑、樁長、及樁間距作為設計參數,以測試其對樁基礎承載特性及其力學變形行為之影響。在不同設計參數條件下,包括:五種樁徑(D=1.0、1.5、2.0、2.5、3.0 m)、三種樁長(L=30、40、50 m)、三種樁間距(S=12 m、16 m、20 m),並定義長徑比(=L/D=15、20、25)及打設間距比R(=S/D=6、8、10),可求得樁基礎在各種組合載重作用下之載重~位移曲線、各類極限承載力變化曲線、V-H (垂直-水平組合載重)極限承載力包絡線、及p-y曲線。此外,進行群樁承受地震載重之動態模擬,以探討群樁在地震作用下之反應。最後,在垂直、水平、及彎矩載重共同作用下,可得到V-H-M三維極限承載力包絡面。此包絡面可用以評估離岸風機樁基礎承受實際載重情況下之穩定性。
由分析結果可知:(1)樁身周圍土體位移量及塑性點分布範圍,將隨著載重之增加而變大,且主要集中於海床表層土及樁頭周圍。(2)樁基礎承受水平載重時之土層反力p,將隨著土層深度、樁徑、及樁長之增加而提高。相較於單樁,群樁p-y曲線之斜率(k=p/y)明顯較高,且不易達到臨界破壞狀態。(3)增加樁徑,對於單樁及群樁之垂直、水平、及彎矩承載力之提升效果顯著。(4)增加樁長,在單樁方面,垂直承載力之提升效果顯著,而水平及彎矩承載力則影響微小;在群樁方面,垂直及彎矩承載力之提升效果顯著,而水平承載力則幾無影響。(5)群樁間距對各類承載力之影響程度由高至低依序為:彎矩>水平>垂直,尤其對於樁身彎矩影響至鉅。(6)在不同設計參數值條件下,樁基礎V-H極限承載力包絡線形狀相似,但包絡線將隨著設計參數值之增加而擴大。(7)在不同彎矩載重作用下,隨著彎矩值之增加,V-H極限承載力包絡線會縮小。又當M=Mult (彎矩載重達極限值)時,V-H極限承載力包絡線會縮小成座標原點(0,0)。(8)由V-H-M三維極限承載力包絡面可知:當樁基礎承受之組合載重落於包絡面內時,樁基礎處於穩定狀態。再者,若落於包絡面上,則樁基礎處於承載力之極限狀態。最終,若落於包絡面外,則樁基礎發生破壞。

According to the numerical results of pile loading test performed on three soil profiles determined by soil boring logs obtained from the wind farm near Chan-Hua coast of western Taiwan, the E-E' soil profile which gave the lowest bearing capcity of single pile was utilized as the representive profile for the subsequent analyses. This study investigates the bearing capacities and mechanical behaviors of pile foundation installed on the seabed of wind farm near Chan-Hua coast of western Taiwan for the supporting structure of offshore wind turbine by three-dimensional (3-D) finite element program Plaxis 3-D.
Firstly, using the boring logs, SPT-N values, and laboratory tests of undisturbed sampes from the wind farm, one can estimate the required material model paramters of soil strata for numerical model. In addition, consulting the commonly used interanational design criteria and recent case histories, one can preliminarily determine the combined design loading and pile geometries which is appropriate for the environments of wind farm selected for the installation of offshore turbine. Secondly, numerical analyses were performed on two lateral loading tests of single model pile in laboratory and the comparisons between the simulation and measurement of the tests were made to calibrate the required soil/pile material model parameters. The comparisons show that the simulations of H~h curves (lateral loading H vs. lateral displacement h), lateral displacement, and bending moment distribution of pile shaft are in excellent agreement with the measurements. In addition, the numerical results indicate the utilizatons of Mohr-Coulumn soil model and embedded pile structural element enable a satisfactory simulation of the soil/pile interaction behaviors when subjected to lateral loading.
Subsequently, 3-D numerical models of single pile and pile group foundations for offshore turbine were constructed to simulate the soil/pile interaction behaviors subjected to various combined loadings. In numerical model, various pile diameter D, pile length L, and pile spacing S were selected as design parameters to inspect their effects on the bearing capacities and deformation behaviors of pile foundations. For different design parameters, which includes five pile diameters (D=1.0, 1.5, 2.0, 2.5, and 3.0 m), three pile lengths (L=30, 40, and 50 m), three pile spacings (S=12, 16, and 20 m), three pile length/pile diameter ratios (=L/D=15, 20, and 25), and three pile spacing ratios (R=S/D=6, 8, and 10), various loading~displacement curves, ultimate bearing capacities, ultimate bearing capcity envelopes on the V-H (Vertical-Horizontal combined loading ) plane, and the p-y curves can be determined under various combined loading conditions. In addition, a dynamic simulation was carried out on a pile group whne subjected to earthquake loading to inspect the soil/pile interaction responses. Finally, under the action of vertical, horizontal and bending moment combined loadings, a V-H-M 3-D ultimate bearing capacity envelopes can be determined and applied to evaluate the stability of pile foundation for offshore turbine when subjected to various working loads.
Based on the numerical results, several conclusions can be made: (1) Large displacement and plastic points at ultimate state mostly distribute and concentrate in the topsoil of seabed and around pile head. (2) The soil resistance at the soil/pile interface for lateral loading will ascend with the increases of depth, pile diameter and pile length. The gradient of p-y curve and ultimate bearing capacity for pile group is obviously higher than that of single pile. (3) The vertical, horizontal, and bending moment bearing capacities of sigle pile and pile group will be largely promoted with the increase of pile diameter. (4) For single pile, the vertical bearing capacity will be promoted notably with the increasing pile length. On the other hand, for pile group, the vertical and bending moment bearing capacities will be greatly promoted with the increasing pile length whereas the horizontal bearing capacity is almost insensitive to the pile length. (5) The influencial extent of spacing on the various bearing capacities of pile group from high to low in sequence is: bending moment loading  horiztonal loading > vertical loading. Especialy, the bending moment bearing capacity of pile group is highly influenced by the pile spacing. (6) For different design parameters, the shapes of ultimate bearing capacity envelopes of pile group on V-H plane is similar while the envelopes will expand as the magnitude of design parameter increases. (7) For different loading levels of bending moment, the ultimate bearing capacity envelopes on V-H plane will contract as the bending moment loading gradually increase. In addition, when the bending moment loading reachs ultimate value, namely, M=Mult, the ultimate bearing capacity envelopes on V-H plane will contract into the origin of V-H-M space or coordinate system (0,0). (8) For the Vult-Hult-Mult (or V-H-M) 3-D ultimate bearing capacity envelope surface (or ultimate bearing capacity space), the pile foundation situates in a stable state if the coordinate of combined loading (V, H, M) falls inside the envelope surface. Further, the pile foundation situates in a critical state if the coordinate of combined loading falls on the envelope surface. Eventually, the pile foundation fails if the coordinate of combined loading falls outside the envelope surface.
其他識別: U0005-1408201523143800
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-18起公開。
Appears in Collections:水土保持學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102042023-1.pdf20.53 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.