Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89400
標題: Adaptive strategies of soil and water conservation for the watershed vulnerability to sediment disaster in response to climate change
因應氣候變遷土砂易致災集水區水土保持之調適策略
作者: 何世華
Shih-Hua Ho
關鍵字: 氣候變遷;生態環境補償;流域整體規劃;Climate change;Ecological compensation;Integrated planning of a basin
引用: 1. 中央研究院(2011),因應氣候變遷之國土空間規劃與管理政策建議書,中央研究院報告。 2. 中華水土保持學會、水土保持局,2005,水土保持手冊。 3. 王鑫(1988),地形學,聯經出版事業股份有限公司。 4. 內政部(2005),綠建築解說與評估手冊。 5. 內政部(2008),氣候變遷下之臺灣都市災害型態與衝擊評估先期研究計畫。 6. 內政部(2013),全國區域計畫草案。 7. 內政部(2013),國土計畫法草案。 8. 台灣省水利局(1989),台灣水文資料電腦檔案應用之研究:(5)水利局全省雨量站歷年年最大一日二日三日暴雨統計及頻率分析,台灣省水利局。 9. 李光敦(2002),水文學,五南圖書出版股份有限公司出版。 10. 李俊祥、宋永昌、傅徽楠(2003),上海市中心城區地表温度與綠地覆蓋率相關性研究,上海環境科學,第22卷,第9期,第599-601頁。 11. 丘昌泰(1999),強化地方政府的策略規劃功能,研考雙月刊,第23卷,第3期,第26-34頁。 12. 丘昌泰(2002),邁向績效導向的地方政府管理,研考雙月刊,第26卷,第3期,第46-56頁。 13. 行政院(2009),莫拉克颱風災後基礎建設重建方案。 14. 行政院(2012),農村再生政策方針。 15. 行政院經濟建設委員會(2012),國家氣候變遷調適政策綱領。 16. 行政院研究發展考核委員會(2009),提升行政院各部會策略規劃能力之研究。 17. 行政院農業委員會(1996;2012),水土保持技術規範。 18. 行政院農業委員會(2003;2012),水土保持法。 19. 江中豪(2002),應用遙測影像於都市地區綠化程度評估之研究,中國文化大學建築及都市計畫研究所碩士論文。 20. 何世華、林政侑、黃文政(2014),因應極端氣候災後水土資源復育之調適,水保技術,已接受。 21. 何坤益(2012),從上游處治理-落實水源涵養保安林之復育與管理,林業研究專訊,第19卷,第6 期,第19-23頁。 22. 沙學均(2009),MODIS衛星影像應用於台灣地區森林健康監測,屏東科技大學森林系,第95頁。 23. 杜恆儉、陳華慧、曾伯勛(1991),地貌學及第四紀地質學,地質出版社。 24. 雨水貯留浸透技術協會(1995),雨水浸透施設技術指南指針〔案〕調查、計畫篇,日本。 25. 林子平(1998),基地保水性能實驗解析,國立成功大學建築研究所碩士論文。 26. 林于尊(2000),農地重劃景觀生態變遷之研究,台灣大學農業工程學系碩士論文。 27. 林士傑(2008),苗栗縣山坡地住宅社區開發保育利用問題與對策,國立中興大學水土保持學研究所,中華水土保持學報,第40卷,第2期,第223-246頁。 28. 林文賜(2002),集水區空間資訊萃取及坡面泥砂產量推估之研究,國立中興大學水土保持學系博士論文。 29. 林玉紳(2010),以生態系統管理觀念為基礎的濕地政策研究,國立臺北大學自然資源與環境管理研究所碩士論文。 30. 林昭遠、林文賜(2000),集水區地文水文因子自動萃取之研究,中華水土保持學報,第31卷,第3期,第247-256頁。 31. 林昭遠、林文賜、張力仁(1999),數值地形模型應用於集水區規劃與整治之研究,中華水土保持學報,第30卷,第2期,第149-155頁。 32. 林憲德(2005),綠建築解說與評估手冊(2005年更新版),內政部建築研究所。 33. 林憲德(2005),綠建築設計技術彙編,內政部建築研究所。 34. 林憲德(2000),綠建築設計技術彙編,內政部建築研究所。 35. 邱湞瑋(2006),勢能蒸發散計算方法應用於中海拔地區之比較,國立臺灣大學森林環境暨資源學研究所碩士論文。 36. 吳嘉俊、盧光輝、林俐玲(1996),土壤流失量估算手冊,屏東縣:國立屏東技術學院。 37. 凃邑靜(2007),人工濕地生態淨化系統處理效能之探討-以彰化縣洋子厝溪為例,國立中興大學環境工程學系。 38. 施鈞程(2003),台灣森林集水區的蒸發散量推估,國立中興大學水土保持學系碩士論文。 39. 徐義人,1995,應用水文學,國立編譯館出版。 40. 荊樹人、李得元、王姿文、林瑩峰、錢紀銘及邱少婷 (2003),利用人工濕地實場系統之生態工法處理社區汙水(Ⅰ)-以人工溼地系統作為二級處理設施效能的探討,國科會專題研究計畫成果報告。 41. 國家災害防救科技中心(2009),莫拉克颱風淹水問題探討及改善策略研擬,災害防救電子報。 42. 許秋玲(2002),數值高度模型之地形複雜度量度指標研究—以蝕溝等級為例,國立臺灣大學地理環境資源學研究所碩士論文。 43. 許晃雄、周佳、吳宜昭、盧孟明、陳正達、陳永明(2012),台灣氣候變遷的關鍵議題,台灣醫學,第16卷,第5 期,第459-470頁。 44. 陳文福、鄭新興(1997),遙測與GIS應用於集水區大型坡地開發之變遷分析,水土保持學報,第29卷,第1期,第41-59頁。 45. 陳正祥(1957),氣候的分類與分區,林業叢刊(7),p.174。陳永明、陳亮全、林李耀(2011),氣候變遷之災害衝擊與防災調適策略,國家災害防救科技中心、國立臺灣大學建築與城鄉研究所。 46. 陳宜清(2004),探討環境敏感指標地圖在海岸資源管理與溢油污染清理之應用性,第5屆環境管理研討會。 47. 陳彥傑(2004),台灣山脈的構造地形指標特性-以面積高度積分、地形碎形參數與河流坡降指標為依據,國立成功大學地球科學系博士論文。 48. 陳衍派(2003),生態池規劃方法之研究-以屏東建功森林親水公園為例,屏東科技大學水土保持系碩士論文。 49. 陳振華(2000),河川綜合環境品質評估模式之建立與應用-以高屏溪為例,東華大學自然資源管理研究所碩士論文。 50. 陳朝圳(1999),南仁山森林生態系植生綠度之季節性變化,中華林學季刊,32(1):53-66。 51. 陳慧敏(2003),綠覆率與地表溫度關係之研究-以龍潭地區為例,中華大學土木工程學系碩士論文。 52. 陳靜美(2007),永續農村住居環境指標系統之初探」國立中興大學農村規劃研究所碩士論文。 53. 張坤民、溫宗國、杜斌、宋國君(2003),生態城市評估與指標體系,化學工業出版社。 54. 張洲滄(2001),都市保水性能與地表逕流量之實測解析-以台南市虎尾寮地區為例,國立成功大學建築學系碩士論文。 55. 張瑞津(1994),地形學圖研究的概觀,中等教育,45:pp.16-28。 56. 莊智瑋(2010),環境指標應用於崩塌地植生復育之研究,國立中興大學水土保持學系博士論文。 57. 黃大任(1990),台灣皿蒸發量空間分佈之研究以PENMAN法及THORNTHWAITE法作比較,國立臺灣大學地理研究所碩士論文。 58. 黃俊德 (1979),台灣降雨沖蝕指數的研究,中華水土保持學報,第10卷,第1期,第127-144頁。 59. 黃國禎、王韻浩、焦國模(1996),植生指標於SPOT衛星影像之研究,臺灣林業,第22期,第1卷,第45-52頁。 60. 黃意茹(2002),都市綠覆率與氣溫之相關性研究-衛星影像類神經網路分類法之應用,逢甲大學土地管理所碩士論文。 61. 萬鑫森、黃俊義(1989),台灣坡地土壤沖蝕,中華水土保持學報,第20卷,第2期,第17-45頁。 62. 萬鑫森、黃俊義(1981)萬鑫森、黃俊義,台灣西北部土壤沖蝕及流失量之估算,中華水土保持學報,第12卷,第一期,第57-67頁。 63. 經濟部水利署(2003),台灣地區雨量測站降雨強度-延時 Horner公式分析。 64. 經濟部水資源局(2001),水文設計應用手冊,台灣大學生物環境系統工程學系。 65. 鄭克聲、鄭彥斌、葉惠中( 1999 ),隨機變域繁衍之研究及其應用,台灣水利季刊,第47卷,第2期,第35- 42頁。 66. 蔡勳雄(1982),生活素質與都市環境,明德基金會生活素質研究中心。 67. 歐陽元淳(2003),水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例,國立臺灣大學地理環境資源學研究所碩士論文,pp.17~20。 68. 顏子豪(2008),氣候變遷對於集水區入流量之衝擊評估-以翡翠水庫集水區為例,國立台灣大學土木工程學研究所。 69. 盧孟明、卓盈旻、李思瑩、李清縢及林昀靜(2012),臺灣氣候變化:1911~2009 年資料分析,中央氣象局,大氣科學,第40期,第3號。第297-321頁。 70. 鎌田修(2003),透水性鋪面滲透性之評估,第23屆中日工程技術研討會論文集,內政部營建署委託,台北科技大學水環境研究中心主辦。 71. 譚仲哲、童慶斌(2008),氣候變遷對台北地下水補注之衝擊,農業工程學報,第54卷,第1期,第1-15頁。 二、英文部份 1. Akan, A. O. and E. N. Antoun, 1994. Runoff detention for flood volume of erosion control. Journal of Irrigation and Drainage Engineering, 120(1): 168-178. 2. Baker, W. L., 1989. A review of models of landscape change. Landscape Ecology, 2(2):111-133. 3. Band, L. E., 1986. Topographic Partition of Watersheds with Digital Elevation Models. Water Resources Research, 22(1): 15-24. 4. Bedient, P. B. and W. C. Huber, 2002. Hydrology and Floodplain Analysis 3rd ed. Prentice-Hall, Inc., New Jersey, USA, pp.394-398. 5. Bryson, J. M., 1988. Strategic Planning for Public and NonprofitOrganizationSan Francisco. CA: Jossey-Bass Inc., Publishers. 6. Bryson, J. M., 1995. Strateaic Plannindfor Public andNonprofit Organizations (rev. edn). San Francisco, CA: Jossey-Bass 7. Burgan, R. E. and Hartford R. A., 1993. Monitoring vegetation greenness with satellite data. USDA Forest Service Intermountain Research Station General Technical Report INT-297. 8. Cheng, K. S., I. Hueter, E. C. Hsu, H. C. Yen, 2001. A scale-invariant Gauss-Markov model for design storm hyetographs. Journal of the American Water Resources Association, 37(3): 723-735. 9. Chou, T. Y., W. T. Lin, C. Y. Lin, W. C. Chou, P. H. Huang, 2004. Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM. Journal of Hydrology, 287: 49-61. 10. Chung, Y. L., 1998. Using remote sensing information in distribution of Betel Nut in NeipuHsian Pingtung count. The second surveying and mapping of cross-strait and theseventeenth surveying science and application symposium, 962-972 11. Cook, H. L., 1936. The nature and controlling variables of the water erosion process. Soil Sci. Soc. Am. Proc. 1, 60-64 12. Crain, W. N. and Zude, E. H., 1976. Perceiving Environmental Quality. New York: Plenum. 13. Csiszar, I. and Kerenyi, J., 1995. The effect of the vegetation index on the daily variation of the active surface temperature. Advance Space Research, 16(10): pp.177-180. 14. De Neufville, J. I., 1979. Validating Policy Indicators. Policy Sciences 10173. 15. Dymond, J. R., Jessen, M. R., Lovell, L. R., 1999. Computer simulation of shallow landsliding in New Zealand hill country. JAG, 1, 2, 122-131. 16. Evans, I. S., 1972. General Geomorphometry, Derivates of Attitude, and Descriptive Statistics, in Chorley. R.J. (Ed.): Spatial Analysis in Geomorphology: pp.17-90, London: Methuen & Co Ltd. 17. Fairfield, J. and P. Leymarie, 1991. Drainage Networks from Grid Digital Elevation Models. Water Resources Research, 30(6):1681-1692. 18. Forman R. T. T., and Godron M., 1986. Landscape ecology. John Wiley and Sons,Inc, New York, USA. 19. Goodchild, M. F. and D. M. Mark, 1978. The Fractal Nature of Geographic Phenomena. Annals of the Association of American Geographers, 77(2): pp.265-278. 20. Grossmann, M. and O. Dietrich, 2012. Integrated Economic- Hydrologic Assessment of Water Management Options for Regulated Wetlands Under Conditions of Climate Change: A Case Study from the Spreewald (Germany). Water Resour Manage 26:2081–2108 21. Hamon, W. R., 1961. Estimating potential evapotranspiration. Journal of Hydraulics Division , Division of the American Society of Civil Engineers, 87(HY3):107-120。 22. Higuchi A, A. Kondoh, S. Kishi, 2000. Relationship among the surface albedo, spectral reflectance of canopy, and evaporative fraction at grassland and paddy field. Advance Space Research, 26(7):1043-1046. 23. Intergovernmental Panel on Climate Change. 2007. Climate change 2007: Synthesis report—An assessment of intergovernmental panel on climate change. Geneva, Switzerland: Author. 24. Jensen, M. E., R. D. Burman, R. G. Allen (eds.), 1990. Evapotranspiration and irrigation water requirements. ASCE, manuals and reports on engineering practice No.70. New York. 25. Jenson, S. K. and J. O. Dominque, 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering & Remote Sensing, 54(11): 1593-1600. 26. Junko I., W. Shiaki, F. Takahiko, 2001. Landform analysis of slope movements using DEM in Higashikubiki area. Japan. Computers & Geosciences, 27:pp.851-865. 27. Klik and Eitzinger. 2010. Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. Agrcultural Science,148(5):529-541. 28. Kuichling, E. 1889. The Relation Between The Rainfall and The Discharge of Sewers in Populous Districts. ASCE Transactions, 20: 1-56. 29. Laws, J. O. and D. A. Parsons, 1943. The Relationship ofRaindrop Size to Intensity. Trans. Am. Geophys. Union, 24:pp.452-459. 30. Lin, C. Y., W. T. Lin, W. C. Chou, 2002. Soil erosion prediction and sediment yield estimation: The Taiwan experience. Soil & Tillage Research, 68:143-152. 31. Lin, W. T., W. C. Chou, C. Y. Lin, P. H. Huang, J. S Tsai, 2008. WinBasin: Using improved algorithms and the GIS technique for automated watershed modeling analysis from digital elevation models. International Journal of Geographical Information, 22(1): 47-69. 32. Liu, H. and L. Wang, 2008. Mapping detention basins and deriving their spatial attributes from airborne LiDAR data for hydrological applications. Hydrological Processes, 22: 2358-2369. 33. Mark, D. M., 1975. Geomorphometric Parameters: A Review and Evaluation. Geografiska Annaler. Series A, Physical Geography, 57: pp.165-177. 34. Mark, D. M., 1984. Automated detection of drainage networks form digital elevation models. Cartographica Auto-Carto Six Selected Papers, 21(3);168-178. 35. Mark, D. M., 1988. Network models in geomorphology. in Modelling Geomorphological Systems, ed. M.G. Anderson, John Wiley. 36. Martz, L. W. and J. Garbrecht, 1998. The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models. Hydrological Processes, 12: 843-855. 37. Martz, L. W. and J. Garbrecht, 1999. An outlet breaching algorithm for the treatment of closed depressions in a raster DEM. Computer & Geosciences, 25: 835-844. 38. McGarigal, K. and B. Marks., 1995. FRAGSTATS: Spatial analysis program for quantifying landscape structure. USDA Forest Service Gen. Tech. Rep. PNW-GTR–351. 39. Mitchell, J. K. and Jr. B. A. Jones, 1976. Micro-relief surface depression storage: analysis of models to describe the depth-storage function. Journal of the American Water Resources Association, 12(6): 1205-1222. 40. Mitchell, J. K. and Jr. B. A. Jones, 1978. Micro-relief surface depression storage: changes during rainfall events and their application to rainfall-runoff models. Journal of the American Water Resources Association, 14(4):777 - 802. 41. Nutt, P. C. and R. W. Backoff, 1992. Strategic management of public and third sector organizations: a handbook for leaders. San Francisco: Jossey-Bass Publishers. 42. O'Callaghan, J. F. and D. M. Mark, 1984. Computer Vision. Graphic and Image Processing, 28:323-344. 43. Olivera, F., J. Furnans, D. Maidment, D. Djokic, Z. Ye, 2002. Drainage system. In: Maidment, D.R. (Ed.) Arc Hydro: GIS for Water Resources. Environmental Systems Research Institute, Redlands, California, pp. 55-86. 44. Penman, H. L., 1963. Vegetation and hydrology. Technical Communication No.53. Commonwealth Bureau of Soils, Harpenden, England. 45. Perry, C. R. and L. F. Lautenschlager, 1984. Functional equivalence of spectral vegetation indices, Remote Sensing of Environment, 14:169~182. 46. Richards, P. L. and A. Brenner, 2004. Delineating source areas for runoff in depressional landscapes; implications for hydrologic modeling. Journal of Great Lakes Research, 30: 9-21. 47. Richards, P. L. and R. Grimm, 2005. Depression storage in land uses common to the fingerlakes region. 1st Annual Conference of the Finger Lakes Institute, Nov. 10, 2005; Geneva NY. 48. Renard K. G., G. R. Foster, G. A. Weesis, D. K. McCool, D. C. Yoder, 1996. Predicting soil erosion by water: A guideto conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA, Agriculture Handbook Number 703 49. Senay G. B. and R. L. Elliott, 2000. Combining AVHRR-NDVI and landscape data to describe temporal and spatial dynamics of vegetation. Forest Ecology and Management, 128(1-2):83-91. 50. Smith, D. D. and D. M. Whitt, 1948. Estimating Soil Losses from Field Areas. Agricultural Engineering. 29:394-396. 51. Soille, P., J. Vogt, R. Colombo, 2003. Carving and adaptive drainage enforcement of griddigital elevation models. Water Resources Research 39(12): 1366-1375. 52. Tarboton, D. G., R. L. Bras, I. Rodriguez-Iturbe, 1991. On the Extraction of Channel Networks from Digital Elevation Data. Hydrologic Processes, 5(1): 81-100. 53. Tarboton, D. G., D. P. Ames, 2001. Advances in the mapping of flow networks from digital elevation data. World Water and Environmental Resources Congress, Orlando, Florida, May 20-24, ASCE. 54. Tarboton, D. G., 2005. Terrain Analysis Using Digital Elevation Models (TauDEM). http://hydrology.neng.usu.edu/taudem/Thornthwaite, C.W. (1948), 'An approach toward a rational classification of climate.' Geographical Review, 38(1): 55-94. 55. Thornthwaite, C. W., 1931. The climates of North America according to a new classification. Geographical Review, 21: 633-655. 56. Thornthwaite, C. W., 1948. An approach toward a rational classification of climate. Geographical Review, 38(1): pp.55-94. 57. Troll, C., 1939. Luftbildplan und okologisch Bodenfors chung. Zeitschrift der Gesellschaft fir Erdkunde zu, Berlin, Germany, p.241-298. 58. Tuhkanen, S., 1980. Climatic parameters and indices in plant geography. Almqvist and Wiksell International, Sweden, p.110. 59. Turner, M. G., 1988. A Spatial Simulation Model of Land Use Changes in a Piedmont County in Georgia. Applied Mathematics and Computation, 27:39-51. 60. Urbonas, B. R., and L. A. Roesner, 1993. Hydrologic design for urban drainage and flood control. Handbook of Hydrology, D. R. Maidmont, ed., McGraw-Hill, New York.. 61. U.S. EPA, 1990;USBR, 2005. U.S. Bureau of Reclamation Great Plains Region Provisional Data Disclaimer. http://www.usbr.gov/gp/disclaim. htm. 62. Verrios, S., V. Zygouri, S. Kokkalas, 2004. Morphotectonic analysis in the ELIKI fault zone. Bulletin of the Geological Society of Greece vol. XXXVI, pp.1706-1715. 63. Walling, R. L., 1988. Soil Erosion Research Methods. Soil and Wate Conservation Society, Iowa, USA. 64. Walling, D. E., M. A. Russell, R. A. Hodgkinson, Y. Zhang, 2002. Establishing sediment budgets for two small lowland agricultural catchments in the UK. Catena,47, 4,pp. 323-353. 65. Wanielista, M., R. Kersten, R. Eaglin, 1997. Hydrology: Water Quantity and Quality Control 2nded. John Wiley &Sons, Inc., New York, USA, pp.205-264. 66. Wilson, J. L. and J. C. Gallant, 2000. Terrain analysis. John Wiley & Son, Inc., pp.51-58. 67. Wischmeier, W. H., 1959. A Rainfall Erosion Index for A Universal Soil-loss Equation. Soil Sci. Soc. Am. Proc., 23:246-249. 68. Wischmeier, W. H. and D. D. Smith, 1965. Predicting Rainfall-erosion Losses from Cropland East of the Rocky Mountains. Agricultural Research Service, United States Department of Agriculture, pp282. 69. Zingg, A.W., 1940. Degree and length of land slope as it affects soil loss in runoff. Agricultural Engineering, Vol.22, pp.59- 64.
摘要: 
面對全球暖化氣候變遷極端水文事件,政府雖年年編列高額治理經費,但淹水事件仍頻頻傳出,顯見治理成效有限,而水患及土砂災害,仍持續在威脅民眾的生命財產安全。故相關單位所採取的治理對策、執行方案及施行措施,有進行調適必要。
本研究是採生態環境補償及流域整體規劃治理之系統性觀念,探討現行之水土保持管理與治理行為之適宜性,並從觀念上、政策上及執行上進行分析,分別提出相對的調適策略。研究試區位於高雄市楠梓仙溪(旗山溪)主流集水區,該集水區經莫拉克風災侵襲,區內產生嚴重崩塌,屬土砂易致災集水區。
本研究以氣象指標、生態指標、綠覆率指標等環境指標來進行集水區之水土資源問題診斷,瞭解問題發生的原因、區位、規模等影響面向後,再提出處方即水土保持調適策略。研究成果如后:
1.在政策上:主管機關除應注重業務單位之執行成果外,更須配合整體性策略指引,強化總體執行成效。
2.在觀念上:水土保持不僅要注意治理(或開發)區域之安全排水,更須考量整體流域蓄水分洪問題;土地開發利用除須符合環境承載力外,更須強化環境生態補償作為。
3.在執行上:水土保持管理與治理業務由各部門獨立運作,且由中央與地方二級分別執行,主管機關(單位)須加強溝通協調,建立整體目標與有效的合作運作模式。
4.因應極端氣候變遷之新局勢,須加強土石流之防災、減災管理,並適度調高水土保持治理與管理標準。

Under climate change, the government has compiled large amount of budgets for the treatment of disasters to against extreme hydrological events, but the benifits of the strategies are limited due to the inundation event occurs frequently. People's lives, properties and safety are still threatened by the disasters of flooding and sediment. Therefore, it's necessary to adjust the strategies and measures that authorities have taken.
This study adopted systematic concepts using eco-environmental compensation and integrated basin planning to explore the suitability of behaviors in management and treatment of soil and water conservation. The correspondant adaptive strategies are provided through the analysis of information derived from concepts, policies, and executions. Nanzihsian watershed in Kaohsiung County is taken as the study area which is vulnerable to debris disaster due to severe landslides caused by Typhoon Morakot.
The study was carried out for diagnosing the issues of soil and water resources in a watershed by using the environmental index of meteorology, ecology, and green coverage to understand the effects of causes, sites, and scale; and then provides the prescriptions (adaptive strategies) for the use of soil and water conservation. The results are summarized as follows:
1. In policies: The administrative authority pays more attention on the executive results of each sector and without the guidance of integrated strategies, which results in a decreasing of gross executive efficiency.
2. In concepts: Put emphasis on the regional safety drainage and ignores the water storage and floods diversion of integrated basin. Focus on the environmental loading capacity while ignores the mind of environmental eco-compensation.
3. In practices: Isolated operation of each sector in management and treatment of soil and water conservation and the executions are often divided into central and local government, which causes integrated targets and operation mind are deficient. Sectors in administrative authority should strengthen communication, coordination, and tighten inter disciplinary cooperation.
4. Facing a new atmosphere in response to climate change, human should strengthen risk management, and adjust standards of treatment and management in soil and water conservation properly.
URI: http://hdl.handle.net/11455/89400
其他識別: U0005-2701201414190600
Rights: 同意授權瀏覽/列印電子全文服務,2017-01-29起公開。
Appears in Collections:水土保持學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-8094042004-1.pdf5.86 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.