Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89416
標題: Drainage induced slope failure along the mountain road at the Xiaolin Village
小林村山區道路排水誘發邊坡崩壞之研究
作者: 藍欣茹
Hsin-Ju Lan
關鍵字: 崩塌;常態化差異植生指標;地形濕度指數;道路曲率;水系密度;Landslide;Normalized Difference Vegetation Index;Topographic Wetness Index;Road Curvature;Drainage Density
引用: 中文部分 1. 中國土木水利工程學會(2010),「莫拉克颱風高雄縣甲以鄉小林村及那瑪夏鄉、桃源鄉致災原因調查」,行政院公共工程委員會。 2. 中華民國統計資訊網(2009),「道路里程密度」,http:// www.stat.gov.tw/mp.a sp?mp=4。 3. 交通部(2011),「公路路線設計規範」。 4. 交通部(2013),「公路法」。 5. 行政院農業委員會(2011),「農路設計規範」。 6. 行政院農業委員會(2012),「水土保持技術規範」。 7. 余佳樺(2013),「秋冬至早春降雨型態與蓮華池試驗林植生變動之關係」,國立彰化師範大學地理學系碩士論文。 8. 沙學均(2009),「MODIS衛星影像應用於台灣地區森林健康監測」,國立屏東科技大學森林系所碩士論文。 9. 李錫堤、董家鈞、林銘郎(2009),「小林村災變之地質背景探討」,地工技術,122:87-94。 10. 李鎮洋、賴文基、陳振宇、黃效禹、郭力行(2012),「莫拉克颱風複合型災害發生歷程的時空重建-以小林村深層崩塌為例」,中華水土保持學報,42(4):313-324。 11. 林家慶(2007),「應用福衛二號時間序列影像監測曾文水庫集水區崩塌地之時空變化」,國立成功大學地球科學系碩士論文。 12. 林文賜(2009),「應用GIS及RS技術於震災崩塌地監測之研究」,水保技術,4(3):165-170。 13. 林昭遠、鄧亞恬、黃文政(2013),「應用環境指標劃定阿里山溪集水區道路沿線崩塌潛勢之研究」,中華水土保持學報,45 (3): 721-736。 14. 林昭遠、張鑫崴、傅桂霖(2013),「阿里山溪集水區源頭崩塌機制之探討」,水土保持學,45(2): 653-662。 15. 林洋丞(2014),「應用長時序植生指標探討大型崩塌集水區之植生變遷趨勢」,國立中興大學水土保持學系碩士論文。 16. 陳文福(1992),「集水區環境與水文之關係」,水土保持學報,24(1): 113-129。 17. 陳樹群、吳俊鋐(2009),「高雄縣小林村獻肚山巨型深層崩塌引致之地形變遷特性」,中華水土保持學報,40(4): 359-376。 18. 陳建宏(2010),「小林村獻肚山深層崩塌地質構造及地質材料特性之研究」,國立成功大學土木工程學系碩士論文。 19. 許華杞、高治喜、今村遼平、筋章人(2009),「2009年第8號颱風莫拉克帶給臺灣中南部嚴重災害實況-以死亡600多人的小林村與神木村隆華國小全毀的情形為例」,測量工程,51(3):45-53。 20. 張鑫崴(2013),「因應氣候變遷合坑溪集水區調適策略之研究」,中興大學水土保持學系碩士論文,30。 21. 陸象豫(2010),「氣候變遷下的集水區經營」,林業研究專訊,17(5):39-41。 22. 國家實驗研究院國家災害防救科技中心(2012),「國家災害防救科技中心2011年報」,21-22。 23. 黃志杰(2012),「莫拉克風災山崩區域之地質構造與大地應力分析」,國立中央大學地球物理研究所碩士論文。 24. 楊倍航(2013),「臺中市都市熱島效應發展變遷及影響因子之探討」,逢甲大學土地管理學系碩士論文。 25. 潘國樑、林彥享、黃春銘、柯傑夫、鄭錦桐、冀樹勇(2011),「小林埋村事件之還原-衛星影像判釋」,航測及遙測學刊,16(1):63-78。 26. 鄧亞恬(2013),「旗山溪集水區道路沿線崩塌潛勢之研究」,國立中興大學水土保持學系碩士論文,50。 27. 蔡真珍、林昭遠(2011),「集水區土砂脈衝現象之研究」,中華水土保持學報,42(1):12-22。 28. 聯合國政府間氣候變遷小組(2007),「第一工作組第四次評估報告」。 29. 魏倫瑋、羅佳明、鄭添耀、鄭錦桐、冀樹勇(2012),「深層崩塌之地貌特徵-以台灣南部地區為例」,中興工程,115:42-45。 30. 顧承宇、陳建忠、張怡文、許世孟、陳耐錦及溫惠鈺(2012),「氣候變遷下極端降雨引致廣域坡地災害評估技術之研究」,中華水土保持學報,43(1):75-84。 ? 英文部分 1. Bayarjargal Y., Karnieli A., Bayasgalan M., Khudulmur S., Gandush C. and Tucker C. J. (2006) 'A comparative study of NOAA–AVHRR derived drought indices using change vector analysis' Remote Sensing of Environment, 105:9-23. 2. Day, J. W., Pont, JR., D., Hensel, P. F., and Ibanez, C. (1995) 'Impacts of sea-level rise on deltas in the gulf of Mexico and the Mediterranean: the importance of pulsing events to sustainability' Estuaries, 18(4):636-647. 3. Fatehi Marj, A. F. and Meijerink, A. M. J. (2011) 'Agricultural drought forecasting using satellite images, climate indices and artificial neural network' International Journal of Remote Sensing, 32(24):1-13. 4. Leach, M.K., and Givnish, T.J. (1996) 'Ecological determinants of species loss in remnant prairies' Science, 273, 1555-1558. 5. Liu, S. C., C. Fu, C. J. Shiu, J. P. Chen, and F. Wu (2009) 'Temperature dependence of global precipitation extremes' Geophysical Research Letters, 36:L17702. 6. Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering(1973) 'Monitoring vegetation systems in the great plains with ERTS' Third ERTS Symposium, Goddard Space Flight Center, Washington, D C. NASA SP-351, 390-317. 7. Odum, H.T.(1996) 'Environmental Accounting' Emergy and Decision Making, John Wiley, NY, 370. 8. Wilson, J.P. and J.C. Gallant(2000) 'Digital terrain analysis' In: Wilson, J.P., Gallant, J.C. (Eds.), Terrain Analysis. John Wiley & Sons, New York, 1–27. 9. Volcani, A., A. Karnieli, and T. Svoray (2005) ' The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years ' Forest Ecology and Management 215:239-250. 10. Zaitchik, B.F. and H.M. van Es(2003) 'Applying a GIS slope stability model to site-specific landslide prevention in Honduras' Journal of Soil and Water Conservation 58(1):45.
摘要: 
2009年莫拉克颱風侵襲台灣地區,造成小林村東北側之獻肚山發生崩塌;然過去研究認為,崩塌原因為極端降雨及地質脆弱等,卻未能解釋鄰近相同條件之集水區無發生同等規模災害之現象。經檢視航照圖發現,小林村上邊坡崩塌區位之道路開發程度明顯高於周遭未崩塌區位,故道路可能為邊坡破壞影響因素之一。
本研究藉萃取崩塌區位道路沿線之常態化差異植生指標、地形濕度指數、道路曲率、水系密度等環境指標,探討小林村山區道路沿線之環境特性與崩塌之關係。研究結果顯示,透過乾、濕季兩期衛星影像萃取常態化差異植生指標(NDVI),植物生長較不受環境乾旱應力影響之區位(NDVI平均值較高;標準差較小),其土層化育較為深厚,崩塌時有較大土砂量。高強度降雨,大量逕流受道路邊溝截流後,易因水流直進特性,於道路曲率大之區位向下排放,造成崩坍之熱點區位。地形濕度指數高之野溪區位,道路通過處易因向源侵蝕而受害。水系密度高之區位意謂地質較破碎,將增加道路邊坡崩壞之風險。
研究結果顯示,小林村上邊坡之道路排水系統在莫拉克豪雨期間,因排水斷面不足產生溢流,道路沿線約20個轉彎處可能為邊坡破壞之熱點區位,其中10處為向源侵蝕區位,道路邊坡極易因野溪源頭崩坍受損。道路里程A3K+000~A5K+000及B4K+000~B7K+000通過區位之邊坡水系密度較高,其中以A4K+000及B3K+000等處植生之NDVI表現,顯示其土壤較深厚,為道路沿線深層崩塌之區位。
小林村上邊坡道路里程密度為7.34km/km2道路密集,轉彎段計有122處,道路分布蜿蜒。由環境指標分析顯示,道路沿線具多數崩坍熱點區位,其間不乏深層崩坍潛勢,此為小林村深層崩塌原因之ㄧ。

Mountain Hsuen-Du located at the northeastern of the Xiaolin Village was collapsed during the hit of typhoon Morakot on August 2009. Most of previous studies indicated that the occurrence of the enormous landslide was due to the fragile geological formation, steep slope and coupled with the extreme rainfall. However, areas which are adjacent to the landslides having similar topographic and geological characteristics were not failure under the same rainfall event. According to aerial photos, road development on the landslide areas was higher than that of the surrounding non-landslide areas. It is highly suspicious that the collapse of the Mountain Hsuen-Du was possibly related to the development of road system. In order to explore the effects of mountain roads on the landslides, the environmental indices of Normalized Difference Vegetation Index (NDVI), Topographic Wetness Index (TWI), Road Curvatures (RC) and Drainage Density (DD) of the landslide areas were extracted in this study. The sites with higher mean value and lower standard deviation of NDVI, which derived from the SPOT imagery taken in dry and/or rainy seasons, could be implied as the vegetation stands with more drought tolerance due to having deeper soil layer, and the sites once collapsed should produce huge debris volume. TWI and RC were extracted along the road to indicate the potential sites which are vulnerable to slope failure. The surface runoff diverted by the road side ditches could spoil the sites with high RC due to the straight movement characteristics of the diverted runoff and cause the downslope collapse. For the DD viewpoint, the sites with higher DD were implied that the slope was fragile geology and eroded easily. The lack of road drainage capacity brought inadequate serve for the overland flow during the hit of typhoon Morakot. Results found that there were 20 sites along the road with high RC were indicated as hotspot of vulnerability to slope failure, in which 10 of them were the possible sites with headward erosion. Therefore, road constructed on the vulnerable areas could be damaged due to slope collapse. Moreover, the road section A3K+000 to A5K+000 and B4K+000 to B7K+000 were located on the higher DD areas, and particularly at A4K+000 and B3K+000 with the properties of high NDVI which depicts the potential of deep-seated landslides.
In summary, it was found that the Xiaolin Village has a highly intensive mountain road density with 7.34 km/km2 and 122 turning points. Analysis of environmental indices shows that there are several landslide hotspots along the road. It can prove that the development of roadsystem at the Xiaolin Village plays an important role on the collapse of the Mountain Hsuen-Du.
URI: http://hdl.handle.net/11455/89416
其他識別: U0005-2811201416180921
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:水土保持學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-5101042002-1.pdf2.69 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.