Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89426
標題: Fast Estimation of Scour Depths near A Pier using Hydrodynamic Model
應用水理模式快速推估橋墩附近沖刷深度
作者: 卓佳駿
Chia-Chun Cho
關鍵字: 一維水理模式、橋墩沖刷、沖刷經驗公式;CCHE1D、Pier Scour、the Experimental Formula of Scour
引用: 參考文獻 1. 交通部公路總局專案研究計畫(2004),「跨河橋樑訂定封橋水位」。 2. 經濟部水利署(2006),「中區水資源永續經營管理策略規劃」。 3. 經濟部水利署水利規劃試驗所(2007),「美國國家計算水科學及工程中心河道變遷模式之引進及應用研究(1/3)」,葉克家等人。 4. ?昭堯等人(2008~2010),「大甲溪河段輸砂特性試驗報告(1/3~3/3) 」,經濟部水?署水?規劃試驗所委託研究計畫成果報告。 5. 經濟部水?署(2009)「大甲溪石岡壩下游河段河床穩定方案之研究(2/4)」。 6. 經濟部水利署水利規劃試驗所(2009),「大甲溪石岡壩下游河段河床穩定方案之研究(2/4)」。 7. 經濟部水?署水?規劃試驗所(2010),「大甲溪治?規劃檢討(天?壩至河口河段)」。 8. ?昭堯等人(2010),「大甲溪河段輸砂特性試驗總報告」,經濟部水?署水?規劃試驗所委託研究計畫成果報告。 9. 交通部公路總局 (2010),「交通部公路總局第五區養護工程處轄區9座橋?訂定封橋水位 2009年度正式成果報告總報告」 10. 交通部公路總局(2011),「跨河橋樑河床沖刷變化?史資?冊建置及其相關維護管?研究」。 11. 交通部運輸研究所(2011),「河道水位與橋墩沖刷推估模式之建立研究」。 12. 經濟部水利署(2012),「101 ??大甲溪、筏子溪大斷面測?工作計畫」。 13. 交通部運輸研究所(2013),「跨河橋樑流域管理方法與驗證之研究」。 14. Blench, T., (1969) 'Mobile-bed fluviology.' University of Alberta Press, Edmonton, Canada. 15. Breusers, H. N. C., Nicollet, G., and Shen, H. W. (1977). 'Local scour around cylindrical piers.' J. Hydraul. Res., 15(3), 211–252. 16. Butch, G. K., and Lumia, R. (1999). 'Effects flow duration on local scour at bridge piers in New York.' Stream Stability and Scour at Highway Bridges, Compendium of Papers, Water Resources Engineering Conference 1991–1998, E. V. Richardson and P. F. Lagasse, eds., ASCE, Reston, Va. 17. Chang, W. Y., Lai, J. S., and Yen, C. L. (2004). 'Evolution on scour at circular bridge piers.' J. Hydraul. Eng., 130(9), 1–9. 18. Chiew, Y. M. (2004). 'Local scour and riprap stability at bridge piers in a degrading channel.' J. Hydraul. Eng., 130(3), 218–226. 19. Coleman, N. L. (1971). 'Analyzing laboratory measurements of scour at cylindrical piers in sand beds.' Proc., 14th IAHR Congress, Vol. 3, Paris, 307–313. 20. Davis, S. S. (1978). 'Deposition of nonuniform sediment by overland flow on concave slopes.' MS thesis, Purdue Univ., West Lafayette, Ind. 21. Einstein, H. A. (1968). 'Deposition of suspended particles in a gravel bed.' J. Hydr. Div., 94(5), 1197–1205. 22. Ettema, R. (1980). 'Scour at bridge piers.' Rep. No. 216, School of Engineering, Univ. of Auckland, Auckland, New Zealand. 23. Foster, G. R. (1982). 'Modeling the erosion process.' Hydrologic modeling of small watersheds, C. T. Haan, H. P. Johnson, and D. L. Brakensiek, eds., ASAE Monograph No. 5, ASAE, St. Joseph, Mich., 297– 382. 24. Foster, G. R., and Huggins, L. F. (1977). 'Deposition of sediment by overland flow on concave slopes.' Special publication No., 21, soil erosion prediction and control, Soil Conservation Society of America, Ankeny, Iowa, 167–182. 25. Froehlich, D. C. (1988), 'Analysis of onsite measurements of scour at piers', Proceeding of the ASCE National Hydraulic Engineering Conference, Colorado Springs, CO. 26. Fukui, J., and Otuka, M. (2002). 'Development of new inspection method on scour condition around existing bridge foundations.' Proc., 1st Int. Conf. on Scour of Foundation, ICSF-1, Texas A&M Univ., College Station, Tex., 410–420. 27. Holmes, P. S. (1974). 'Anlysis and prediction of scour at railway bridges in New Zealand.' New Zealand Engineering, 1974.11, pp.313-320. 28. Jain, S. C., and Fischer, E. E. (1980). 'Scour around bridge piers at high flow velocities.' J. Hydr. Div., 106(11), 1827–1842 29. Kothyari, U. C., Garde, R. J., and Range Raju, K. G. (1992a). 'Live-bed scour around cylindrical bridge piers.' J. Hydraul. Res., 30(5), 701–715. 30. Kothyari, U. C., Garde, R. J., and Range Raju, K. G. (1992b). 'Temporal variation of scour around circular bridge piers.' J. Hydraul. Eng.,118(8), 1091–1106. 31. Lacey, G., (1930) 'Stable channels in alluvium.' Paper 4736, Minutes of the Proc., Institution of Civil Engineers, Vol. 229, William Clowers and Sons Ltd., London, Great Britain, pp.259-292, 1930. 32. Laursen, E. M. (1958). 'Scour at bridge crossings.' Bulletin No. 8, Iowa Highway Research Board, Ames, Iowa. 33. Laursen, E. M. (1962). 'Scour at bridge crossings.' Transaction, ASCE, Vol.127, Part 1, 116-119. 34. Melville, B. W., and Chiew, Y. M. (1999). 'Time scale for local scour at bridge piers.' J. Hydraul. Eng., 125(1), 59–65. 35. Melville, B. W., and Coleman, S. E. (2000). Bridge scour, Water Resources Publications, Littleton, Colo. 36. Mia, M. F., and Nago, H. (2003). 'Design model of time-dependent local scour at circular bridge pier.' J. Hydraul. Eng., 129(6), 420–427. 37. Mueller, D. S. (1996). 'Scour at bridge-detailed data collection during floods.' Proc., 6th Federal Interagency Sedimentation Conf., FISC-6, Vol., 4, Las Vegas, 41–48. 38. Neill, C. R. (1964). 'River-bed scour.' Technical publication No. 623, Canadian Good Road Association, Ottawa, Canada. 39. Oliveto, G., and Hager, W. H. (2005). 'Further results to time-dependent local scour at bridge element.' J. Hydraul. Eng., 131(2), 97–105. 40. Raudkivi, A.J. and Ettema, R. (1983). 'Clear-water scour at cylindrical piers', Journal of Hydraulic Engineering, A.S.C.E., Vol.109(3), pp.338-350,. 41. Richardson, E. V. (1999). 'History of bridge scour research and evaluations in the United States.' Stream Stability and scour at highway Bridges, Compendium of Papers, Water Resources Engineering Conf. 1991–1998, E. V. Richardson and P. F. Lagasse, eds., ASCE, Reston, Va. 42. Shen, H. W., Schneider, V. R., and Karaki, S. S. (1969). 'Local scour around bridge piers.' J. Hydr. Div., 95(6), 1919–1940. 43. Straub, L. G. (1934). 'Effect of channel contraction works upon regimen of moveable bed streams.' Trans., Am. Geophys. Union, Part 2, 454–463. 44. Wang, Z. Y. (1999). 'Experimental study on scour rate and river bed inertia.' J. Hydraul. Res., 37(1), 17–37. 45. Yanmaz, A. M., and Altinbilek, H. D.(1991). 'Study of time-dependent local scour around bridge piers.' J. Hydraul. Eng., 117(10), 1247– 1268.
摘要: 
摘要
臺灣許多橋樑因洪水沖刷而導致損毀、斷橋,造成嚴重的災害及重大的損失,例如2008年辛樂克颱風侵台,大甲溪河水暴漲,后豐大橋橋墩受到洪水沖刷導致橋墩傾斜,造成人員傷亡。為了避免此情況發生,本研究期望能建立一維水理動床水理數值模型,當颱洪事件來臨時,能夠快速依據洪水流量歷線模擬洪水到達各橋樑時的時間與水位,萬一洪水水位高於警戒值可於第一時間反應,以避免重大的損失。
然洪水事件中供參考之橋墩沖刷的量測資料十分稀少,本研究為了獲得現地於颱洪事件發生前後之底床高程變化的資料,以及颱洪事件期間洪水對底床所造成之最大沖刷深度,因此本研究藉由現地試驗蒐集洪水事件期間,對河床、橋墩附近造成之沖刷深度的數據,獲得量測資料後,採用CCHE1D建立動床水理模型進行颱洪事件期間橋樑沖刷的模擬情形,並根據集水區的現地觀測資料進行模式的率定及驗證,搭配沖刷經驗公式估算橋樑周圍底床沖淤之情形,並與量測資料進行比較後進行適用可行性評估,選出適合模擬研究區河道之沖刷經驗公式。
研究結果發現,CCHE1D之水理模擬結果搭配經驗公式,可估算出局部沖刷深度與一般沖刷深度,一般沖刷以Blench(1969)、局部沖刷以Laursen(1962)與現地情況較相符合。整體而言,CCHE1D皆能精準計算洪峰抵達時間,並合理描述洪水歷線之趨勢,藉由CCHE1D快速計算的優點搭配經驗公式,未來於颱風事件能透過重現期距之流量預測颱洪事件時造成的洪水水位、洪峰抵達時間以及推估最大沖刷深度,提供相關單位人員於洪水來時的反應時間更為充裕。

Abstract
A lot of bridges were damaged and broken due to flood scour in Taiwan, which resulted in serious disasters and major losses. For instance, Typhoon Sinlaku caused extremely torrential rain in central Taiwan in 2008 when the discharge in Dajia River sharply rose and without any alerts, the piers tilted and the road collapsed, causing a lot of injuries at the Houfeng Bridge. To avoid the re-occurrence of such situations, it is expected to establish one-dimensional flow and sediment transport model for rapidly estimating the arrival time and the water level of the peak discharge during typhoon and flood events. Once the simulated flood level higher than the bridge blocking water level, first-time response can be issued and unnecessary losses are expected to be reduced.
Nonetheless, few field data of pier scour measurements during flood events are available. In order to receive the data of riverbed elevation changes before and after typhoon and flood events, the experiments of buried washed bricks were proceeded to acquire the maximum riverbed scour depth resulted from flood during typhoon and flood events. With the measured data, CCHE1D was applied to the simulation. After completing all input files for CCHE1D, the simulation results of the flow and sediment transport model for channel networks and the empirical equations for calculating scour depth were compared with the measured data. Results were used to evaluate the feasibility of the model and select the suitable empirical equations for simulating the general scour and local scour of channels.
The results show that the CCHE1D with empirical equations have the ability to estimate general scour and local scour depths. In the research reach, empirical equations of Blench (1969) and Laursen (1962) show good correspondence to the measured general scour and local scour depths, respectively. Overall speaking, CCHE1D could precisely calculate the arrival time of peak and rationally describe the trend of flood graphs. With the advantages of rapid calculation, CCHE1D with empirical equations allows predicting the flood level, peak arrival time, and maximum scour depth caused by typhoon and flood events. The relevant sector personnel could have abundant response time to the flood to avoid unnecessary losses.
URI: http://hdl.handle.net/11455/89426
其他識別: U0005-2811201416195977
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:水土保持學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101042013-1.pdf4.6 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.