Please use this identifier to cite or link to this item:
標題: Application of Unmanned Aerial Vehicle with Large-Scale Particle Image Velocimetry for Measuring Water Surface Velocities
作者: 吳子佳
Tzu-Chia Wu
關鍵字: LSPIV;UAV;流場觀測;表面流速;LSPIV;UAV;flow field;surface velocity
引用: 1. 李明靜(2003),「河川表面流速與流量非接觸式量測方法之發展及應用」,國立成功大學水利及海洋工程研究所博士論文。 2. 吳榮峰(2003),「大尺度質點影像量測法之應用-分析水面流場」,國立成功大學水利及海洋工程研究所碩士論文。 3. Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual review of fluid mechanics, 23(1), 261-304. 4. Bradley, A. A., Kruger, A., Meselhe, E. A., & Muste, M. V. (2002). Flow measurement in streams using video imagery. Water Resources Research, 38(12), 51-1. 5. Buchhave, P. (1992). Particle image velocimetry—status and trends. Experimental Thermal and Fluid Science, 5(5), 586-604. 6. Cenedese, A., Doglia, G., Romano, G. P., De Michele, G., & Tanzini, G. (1994). LDA and PIV velocity measurements in free jets. Experimental Thermal and Fluid Science, 9(2), 125-134. 7. Cowen, E. A., & Monismith, S. G. (1997). A hybrid digital particle tracking velocimetry technique. Experiments in Fluids, 22(3), 199-211. 8. Creutin, J. D., Muste, M., Bradley, A. A., Kim, S. C., & Kruger, A. (2003). River gauging using PIV techniques: a proof of concept experiment on the Iowa River. Journal of Hydrology, 277(3), 182-194. 9. Frazier, A. H. (1974). Water Current Meters in the Smithsonian Collections of the. National Museum of History and Technology. 10. Fujita, I., Muste, M., & Kruger, A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of hydraulic Research, 36(3), 397-414. 11. Fujita, I., & Kunita, Y. (2011). Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera. Journal of Hydro-environment Research, 5(4), 323-331. 12. Gonzalez, R. C. & Wintz, P. 1987 Digital image processing. Addison-Wesley Publishing Company, Inc. 13. Hauet, A., A. Kruger, W. F. Krajewski, A. Bradley, M. Muste, J.-D. Creutin, and M. Wilson (2008), Experimental system for real-time discharge estimation using an image-based method, J. Hydrol., 13, 105 – 110. 14. Kim, M. Muste, A. Hauet, W.F. Krajewski, A. Kruger, A. Bradley. (2008). Stream discharge using mobile large-scale particle image velocimetry: a proof of concept. Water Resources Research, 44, p. W09502 15. Maidment (1993), Handbook of Hydrology, McGraw-Hill, New York. 16. Meselhe, E. A., Peeva, T., & Muste, M. (2004). Large scale particle image velocimetry for low velocity and shallow water flows. Journal of Hydraulic Engineering, 130(9), 937-940. 17. Muste, M., Xiong, Z., Bradley, A., & Kruger, A. (2004). Large-Scale Particle Image Velocimetry: a Reliable Tool for Physical Modeling. 18. Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T. & Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer vision, graphics, and image processing, 39(3), 355-368. 19. Rantz, S. F. (1982), Measurement and Computation of Stream-flow: Volume 1. Measurement of Stage and Discharge, U.S Government Printing Office, Washington. 20. Turnipseed, D. P., & Sauer, V. B. (2010).Discharge measurements at gaging stations (No. 3-A8). US Geological Survey. 21. USGS (1968), Selected Techniques in Water Resources Investigations, U.S Government Printing Office, Washington.
現地流速的觀測方式分為接觸式及非接觸式,接觸式方法主要倚靠觀測人員運用儀器接觸水面量測,不僅費時亦可能造成儀器損失,而非接觸式方法能減少操作人員並降低儀器損壞。非接觸式方法中的大尺度影像質點量測方法(Large Scale Particle Image Velocimetry, LSPIV)由單次量測即可獲得流場面的資訊。分析自然河道之流速時,相較於單點流速資料,流場面的資訊能夠分析河川整體之流速分佈。本研究建立出一套機動性觀測流場系統UAV-LSPIV,以無人飛行載具(Unmanned Aerial Vehicle, UAV)作為相片擷取載具,擷取影像後以LSPIV技術分析流場。
本研究自行建置之UAV系統包含六旋翼飛行器、電子可調式雲台、Sony nex5T相機及影像傳輸模組,影像傳輸模組能即時於飛行中觀測水流影像,透過可調式雲台能旋轉相機鏡頭角度,使UAV拍攝時能正攝水面減少影像之變形。
LSPIV分析法先在室內實驗經過均勻流場驗證,與聲波都卜勒流速儀(Acoustic Doppler velocimetry, ADV)相較,其平均差異均在9%左右,而後運用建置之UAV-LSPIV分別進行高低流量之室外實驗,室外實驗區域於台中市旱溪積善橋下游河段,低流量試驗與手持式ADV量測流速在質點分佈處差異低於8%,高流量試驗與PTV(Particle Tracking Velocimetry)量測差異約為4%。透過室外實驗驗證,本研究所研發之UAV-LSPIV,可正確分析出大範圍之河道表面流場,望能供未來河道生態分析或數值模擬之用。

River flow measurement technologies are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. Its protocols are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and instrument damages can be avoided from directly attaching to the flow. Nonintrusive measurements use radar or image velocimetry to measure the velocities at the free surface.The image velocimetry, such as large scale particle image velocimetry (LSPIV), access not only the point velocity but the flow velocities in an area. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in a field.
The mobile system is based on a six-rotor UAV helicopter, with a Sony nex5T camera, a gimbal, and an image transfer device. UAV attaches an activate gimbal, which help maintain the camera lens orthogonal to the water surface and prevent images from being distorted. The image transfer device can monitor the captured image simultaneously.
Verification of LSPIV was first set up in laboratory, the deviation from velocity measured by current meter and LSPIV is below 9%. After that, the mobile system was applied to field experiments under different flow conditions. In the low flow experiments, the deviation of velocities measured by UAV-LSPIV and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. In the high flow experiment, the deviation of velocities measured by UAV-LSPIV and Particle Tracking Velocimetry (PTV) is about 4%. The results of the field experiments suggest that the UAV-LSPIV is applicable to measure the surface flows in the fields.
其他識別: U0005-1908201515031200
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:水土保持學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102042017-1.pdf14.2 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.