Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89433
標題: Landslide Susceptibility and Conservation Benefit Assessment for Chi-Sun watershed
旗山溪集水區之山崩潛感分析與保育效益評估
作者: 蔡培珊
Pei-Shan Tsai
關鍵字: 山崩潛感;羅吉斯迴歸;植生復育;Landslide susceptibility;logistic regression;vegetation recovery
引用: 參考文獻 1. 工業技術研究院能源與資源研究所(1992),「崩塌地調查、規劃與設計手冊(地滑篇)」,行政院農業委員會與臺灣省政府農林廳水土保持局委託研究報告。 2. 王靜妏(2013),「氣候變遷下曾文水庫集水區崩塌潛勢分析之研究」,國立中興大學水土保持學所碩士論文。 3. 朱豐沂、陳明賢、林昭遠(2012),「以集水區地文因子探討崩塌地植生復育之研究-以旗山溪集水區為例」。 4. 行政院農業委員會(1999),「水土保持法規」,中華水土保持學會。 5. 行政院農業委員會(2003),「水土保持技術規範」,中華水土保持學會。 6. 吳俊鋐(2005),「降雨引發邊坡崩塌潛勢評估模式之建構」,國立中興大學水土保持學所碩士論文。 7. 李錫堤(2009),「山崩及土石流災害分析的方法學回顧與展望」,台灣公共工程學刊,5(1):1-29。 8. 李錫堤、黃俊鴻、劉進金、蔡榮君、洪國華、林書義(1998),「林口台地及鄰接海岸地形變遷與地貌復原可行性探討」,公共工程委員會專案委託計畫成果報告,共135頁。 9. 李錫堤、黃鑑政(2005),「區域性山坡穩定分析之回顧與展望」,地工技術,第104期,33-52。 10. 林于筌、江孟玲、林昭遠(2012),「地文因子對旗山溪集水區莫拉克風災崩塌地植生復育影響之研究」,水土保持學報,44(3):295-312。 11. 林信輝(2001),「水土保持植生工程」,高立圖書有限公司。 12. 林信輝(2007),「崩塌地植生工程與應用植物手冊」,經濟部水利署北部水資源局。 13. 林彥享(2003),「運用類神經網路進行地震誘發山崩之潛感分析」,國立中央大學應用地質學所碩士論文。 14. 林昭遠、吳瑞鵬、林文賜(2001),「921震災塌地植生復育監測與評估」,中華水土保持學報,32(1):59-66。 15. 洪如江(1999),「坡地災害防治」,行政院國家科學委員會。 16. 洪雨柔(2013),「降雨對山崩潛勢分析之影響-以南橫公路50至110k沿線為例」,國立中興大學水土保持學所碩士論文。 17. 高申錡(1994),「阿里山公路沿線公路邊坡崩塌與雨量關係之研究」,國立成功大學資源管理學所碩士論文。 18. 張石角(1987),「山坡地潛在危險之預測及其在環境影響評估之應用」,中華水土保持學報,18(2):41-62。 19. 張弼超(2005),「運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例」,國立中央大學應用地質學所碩士論文。 20. 莊緯璉(2005),「運用判別分析進行山崩潛感分析之研究-以臺灣中部國姓地區為例」,國立中央大學應用地質學所碩士論文。 21. 陳信雄(1995),「崩塌地調查與分析」,渤海堂文化公司。 22. 陳振華、潘國樑(1985),「臺北市山坡地住宅區環境地質調查研究」,工研院能源與礦業研究所報告,第229號,共385頁。 23. 陳凱榮(2000),「中橫公路山崩潛感分級研究-以東勢-德基為例」,國立中央大學應用地質學所碩士論文。 24. 陳嬑璇(2002),「溪頭地區山崩潛感圖製作研究」,國立臺灣大學土木工程學所碩士論文。 25. 楊智堯(1999),「類神經網路於邊坡破壞潛能分析之應用研究」,國立成功大學土木工程學所碩士論文。 26. 溫仁宏(2007),「改進式Sigma filter應用於雷達影像斑駁抑制」,國立中央大學太空科學研究所碩士論文。 27. 經濟部水利署水利規劃試驗所(2007),「高屏溪水系旗山溪上游段治理規劃報告(月眉橋至甲仙攔河堰範圍界)」。 28. 廖珮妤(2012),「阿里山森林鐵路事件型山崩潛感分析」,國立中興大學水土保持學所碩士論文。 29. 臺灣省政府山地農牧局(1989),「臺灣省崩塌地調查報告」,行政院農業委員會山地工作報告,第24卷,第2期,共139頁。 30. 鄭元振(1992),「地理資訊系統在區域邊坡穩定分析之應用-中橫公路天祥至太魯閣段」,國立成功大學礦治及材料科學所碩士論文。 31. 簡瑋廷(2011),「應用物件導向分類方法自動產製斜坡單元」,國立中央大學應用地質學所碩士論文。 32. 蘇苗彬(1998),「集水區坡地安定評估之計量分析方法」,國立中興大學土木工程學所碩士論文。 33. 鐘意晴(2009),「區域性山崩潛感分析方法探討-以石門水庫集水區為例」,國立中央大學地球物理研究所碩士論文。 34. Aleotti, P.; Chowdhury, R., 1999. Landslide hazard assessment: summary review and new perspectives, Bulletin of Engineering Geology and the Environment, 58, 21-44. 35. Atkinson, P. M. and R. Massari, 1998. Generalized linear modelling of susceptibility to landsliding in the central Apennines, Italy, Comput. Geosci. 24:373-385. 36. Ayalew, L. and H. Yamagishi, 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology. 65: 15-31. 37. Burton, A. and J. C. Bathurst., 1998. Physically based modeling of shallow landslide sediment yield at a catchment scale., Environmental Geology. 35:89-99. 38. Carrarar, A., Merenda, L., 1974. Methology for an inventory of slope instability events in Calabria (Southern Italy), Geologia Applicata e Idrogeologica, Vol.9, 237-255. 39. Cox,D. R.,1970. Modelling Binary Data, New York: Chapman & Hall. 40. Dai, F.C.; Lee, C.F., 2002. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, Vol.42, pp.213-228. 41. Fookes, P.G., M. Sweeney, C.N.D. Mandy, and R.P. Martin, 1985. Geological and geotechnical engineering aspects of low cost roads in mountainous terrain. Engineering Geology 21:152. 42. Guzzetti Fausto, Mauro Cardinali, Paola Reichenbach, Francesco Cipolla, Claudio Sebastiani, Mirco Galli, Paola Salvati, 2004. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy, Engineering Geology, 73:229-245. 43. Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181-216. 44. Hansen, A., 1984. Landslide hazard analysis, in Slope Instability (Brunsden, D. and Prior, D.B. eds.), John Wiley and Sons, New York, 523-602. 45. Ives, J.D., Bovis, M.J., 1978. Natural hazards maps for land-use planning, San Juan Mountains, Colorado, U.S.A, Arctic and Alpine Research, Vol.10, No.2, 185-212. 46. Ives, J.D., Messerli, B., 1981. Mountain hazards mapping in Nepal: introduction to an applied mountain research project, Mountain Research and Development, Vol.1, No.3-4, 223-230. 47. Kienholz, H., 1978. Maps of geomorphology and natural hazards of Grindelwald, Switzerland, scale 1:10,000, Arctic and Alpine Research, Vol.10, 169-184. 48. Lee, S. and K. Min, 2001. Statistical analysis of landslide susceptibility at Yongin, Korea, Environmental Geology. 40:1095-1113. 49. Lee, S.; Pradhan, B., 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models, Landslides, Vol.4, pp.31-44. 50. Long, J. S.,1997. Regression models for categorical and limited dependent variables, Thousand Oaks, California: Sage Publications, pp.297. 51. Luzi, L., 1996. Applications of statistical and GIS techniques to slope instability zonation (1:50000 Fabriano Geological Map Sheet). Soil Dyn. Earthq. Eng. 15:83-94. 52. Malgot, J., Mahr, T., 1979. Engineering geological mapping of the west Carpathian landslide areas, Bulletin of the International Association of Engineering Geology, Vol.19, 116-121. 53. Meneroud, J.P., Calvino, A., 1976. Carte ZERMOS, zones exposees a des Risques lies aux Mouvements du Sol et du Sous-Sol a 1:25,000, Region de la Moyenne Vesubie (Alpes-Maritimes), Bureau de Recherches Geologiqueset et Minieres, Orleans, France, 11p. 54. Pareschi, M.T., Santacorce, R., Sulpizio, R., Zanchetta, G., 2002. Volcaniclastic debris flows in the Clanio valley (Campania, Italy): insights for the assessment of hazard potential, Geomorphology, Vol.43, 219-231. 55. Rupke, J., Cammeraat, E., Seijmonsbergen, A.C., van Westen, C.J., 1988. Engineering geomorphology of the Widentobel catchment, Appenzell and Sankt Gallen, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of slope stability, Engineering Geology, Vol.26, 33-68. 56. Sidle, R.C., Pearce, A.J., O'Loughlin, C.L., 1985. Hillslope stability and land use, Water Resources Monograph, Vol.11, p.140. 57. Soeters, R.; van Westen, C.J., 1996. Slope instability recognition analysis and zonation, Chapter 8 in Turner; K.T., Schuster, R.L. (Eds.), Landslides: Investigation and Mitigation, Transportaion Research Board Special Report 247, National Research Council, USA, 129-177. 58. Stevenson, P.C., 1977. An empirical method for the evaluation of relative landslide risk, Int. Ass. Eng. Geol. Bull., Vol.16, 69-72. 59. Varnes, D. J.,1978. Slope Movements and Types and Processes. Landslides : Analysis and Control, Transportation Research Board Nat. Ac. Sci. Washington Special Report 176, pp. 11-13. 60. Varnes, D. J.,1984. Landslide hazard zonation: a review of principles and practice, UNESCO Press, Praris, 63p. 61. Wilson J.P. and Gallant J.C., 2000. Terrain analysis: Principles and applications, New York , Wiley, pp. 87–131.
摘要: 
本研究以旗山溪集水區作為研究樣區,進行崩塌因子篩選後,以高程、坡度、地形粗糙度、坡度粗糙度、常態化差異植生指標(NDVI)、濕度指數、總曲率與總雨量等因子,利用多變量統計分析法中的羅吉斯迴歸法進行山崩潛感分析,並對照莫拉克颱風實際崩塌地分布圖,發現崩塌地多位於本模式預測的集水區中、上游之中高、高山崩潛感區,並由分類誤差矩陣得總體正確率達72.4%,顯示本研究所選用之分析模式與山崩因子對旗山溪集水區莫拉克颱風崩塌發生之模擬結果良好;另外藉由莫拉克颱風侵襲前後共四期衛星影像萃取樣區內NDVI值,由NDVI分布變化可發現集水區河道附近於災後經兩年多已有逐漸恢復的趨勢,惟中、上游區位植生復育情況仍差,可見該區難以藉由自然植生的方式恢復至颱風侵襲前,仍需採用人工的方式幫助該區植物生長。因此,本研究保育策略之研擬,規劃集水區中游一級集水區且地形適宜植生生長之地區,透過NDVI情境的模擬,得知當重現期距低於50年與高於200年時植生復育對山崩潛感值影響較小,當重現期距為50~100年時高崩塌潛感區所佔面積隨著植生復育提高而降低的趨勢。

In this study a multivariate analysis method, Logistic regression, was used for landslide susceptibility analysis of Chi-Sun watershed. After the extraction and selection of environmental factors, the elevation, slope, terrain roughness, slope roughness, NDVI, wentness index, and accumulated rainfall were selected as causal factors of initiating landslides. By inspecting the distributions of landslides resulted from Typhoon Morakot, it is found that the landslides are located in medium-high and high susceptibility area of the midstream and upstream watershed. And the overall accuracy in this event is 72.4%. The predicted susceptibility values show a good agreement with the observed landslides. It indicates that the model and factors used in this model are valid and the simulation results match the Typhoon Morakot event. In addition, the information on the past NDVI values obtained by the analysis of SPOT-4 images suggests a good vegetation recovery in the watershed landslides except the midstream and upstream areas. Therefore, this study focuses on providing suitable conservation and planning strategies around the small catchment of midstream watershed. Landslide hazardous areas are analyzed and mapped resulting from vegetation recovery for different situations. The result is that vegetation recovery to landslide susceptibility values greater impact in the study area when the return period from 50 to 100 years.
URI: http://hdl.handle.net/11455/89433
其他識別: U0005-0202201511561100
Rights: 同意授權瀏覽/列印電子全文服務,2018-02-04起公開。
Appears in Collections:水土保持學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101042018-1.pdf3.69 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.