Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89435
標題: A study on change trend of peak flow discharge for Beinan River under extreme climate
極端氣候下卑南溪洪峰流量變化趨勢之研究
作者: 陳育成
Yu-Cheng Chen
關鍵字: 氣候變遷;洪峰流量;卑南溪;頻率分析;機率分佈;單位歷線;Climate change;Peak flow discharge;Beinan River;Frequency analysis;Probability distribution;Unit hydrograph
引用: 1.王如意、易任(2006),「應用水文學」pp:179~202。 2.王定欽、陳文福(2007),「水文學500題」pp:511~567。 3.余文利、李明旭(2005),「翡翠水庫集水區水文分析」,國立中央大學水文科學研究所碩士論文。 4.邱建源、謝平城(2010),「氣候變遷與設計流量關係之研究-以烏溪為例」,國立中興大學水土保持學報42(4):451-464。 5.許晃雄、吳宜昭、周佳、陳正達、陳永明、盧孟明(2011),「臺灣氣候變遷科學報告2011」,國家災害防救科技中心,關鍵議題pp:3~5。 6.陳憲宗,游保杉(2009),氣候變遷與台灣極端降雨變異趨勢,水資源管理會刊,12月號。 7.張智傑、程智強(2010),「集水區水文特性變異分析-以雙溪流域為例」,中華科技大學土木防災研究所碩士論文。 8.經濟部水利署(2009),「水利建設因應全球氣候變遷白皮書」,經濟部水利署,pp:5-21。 9.經濟部水利署(2012),「氣候變遷下中央管河川警戒水位站建置之檢討與規劃」,經濟部水利署,pp:194。 10.經濟部水利署(2012),「氣候變遷水文情境評估研究(1/2)」,經濟部水利署,pp:255。 11.經濟部水利署水利規劃試驗所(2013),「台灣地區主要河川流域水文與水理設計分析系統平台建立(3/3)」水文與水理計算系統操作手冊,經濟部水利署水利規劃試驗所,pp:1-1~6-18.。 12.經濟部水利署(2006),「河川治理及環境營造規劃參考手冊」,經濟部水利署,pp:23。 13.經濟部水利署(2001),「水文設計應用手冊」,經濟部水資源局,pp:64。 14.經濟部水利署(2008),「區域水資源經理策略擬定之研究」,pp:32。 15.經濟部水利署(2009),「台灣重要河川無因次單位歷線之更新與應用」,pp:49。 16.鄭克聲、王如意(2001),「因應環境變遷之水文規劃設計研究」,經濟部水利署,pp:45。 17.Gitay, H., A. Suarez, R. T. Watson, and D. J. Dokken (2002), 'Climate Change and Biodiversity ', Published by IPCC, Geneva, Switzerland, pp: 10. 18.Houghton, J. T., L. G. Meira Filho, D. J. Griggs and K. Maskell (1997) 'An Introduction to Simple Climate Models used in the IPCC Second Assessment Report ', Published by IPCC, Geneva, Switzerland, pp:19. 19.Liu Shaw Chen, Congbin Fu, Chein-Jung Shiu, Jen-Ping Chen, Futing Wu(2009), 'Temperature dependence of global precipitation extremes', Geophysical Research Letters, volume 36, issume 17, September. 20.Metz Bert, Davidson Ogunlade, de Coninck Heleen, Loos Manuela, Meyer Leo (2001)'Special Report on Carbon Dioxide Capture and Storage ', pp:14. 21.Resinger, Andy (2007) 'Climate Change 2007: the AR4 Synthesis Report,' Published by IPCC, Geneva, Switzerland, pp: 44. 22.Watson, R. T., M. C. Zinyowera and R. H.Moss (1996),'Technologies, Policies, Measures for Mitigating Climate Change', Published by IPCC, Geneva, Switzerland, pp:63.
摘要: 
本研究旨在探討面對全球氣候變遷環境下卑南溪洪峰流量變遷之趨勢,利用經濟部水利署「台灣地區主要河川流域水文與水理設計分析系統」軟體進行分析。暴雨頻率分析雨量站係採水利署所轄卑南溪流域內之向陽(2)、霧鹿、新武(3)、武陵、優男、鹿鳴橋、上里;台東水利會所轄之關山雨量站;台東氣象站所轄之台東氣象站;及台糖公司所轄之瑞豐雨量站等10站為代表站,以徐昇氏多邊形法推求平均最大之一日、二日暴雨量。利用K-S檢定(Kolmogorov-Smirnov test) 與χ2檢定(Chi-square test)進行暴雨量機率分佈之適合度檢定,並以標準誤差(SE)及平方差和(SSE)最小值者為最佳分佈,頻率分析得知卑南溪台東大橋、鹿野溪匯流前、鹿寮溪匯流前控制點最大24小時暴雨及最大48小時暴雨及崁頂溪匯流前控制點最大48小時暴雨皆以三參數對數常態分佈為最佳之機率分佈;僅崁頂溪匯流前控制點最大24小時暴雨以皮爾遜三型為最佳之機率分佈。本研究之設計雨型採用同位序法,並利用三角形單位歷線法、無因次單位歷線法及實測流量法等三種方法推求各重現期距之洪峰流量。
結果顯示,由於氣候變遷之影響,卑南溪台東大橋、鹿野溪匯流前等二個控制點推估之連續48小時100年重現期距之洪峰流量,經比較現行政府公告之洪峰流量值,中游增加3.90%,下游增加15.24%,其以台東大橋控制點增加15.24%最多,卑南溪愈往下游其洪峰流量值有愈明顯增加之趨勢。目前防洪工程手段之保護標準有其一定之限制,若降雨量超過原先規劃設定之保護標準時,相關疏散及避難等非工程措施即顯得非常重要。未來卑南溪河川治理策略除原進行防洪建造物等工程措施外,如何落實相關非工程措施,包含洪水預警系統、緊急避難路線、教育宣導、預防措施及民眾參與等,應為本溪未來重要因應策略上值得探討之課題。

The goal of this research is to explore peak flow discharge transition in mountain river area under global climate change environment. The peak flow discharges of Beinan River are chosen as an example to show the affections on peak flow discharges under global climate change environment. A software, Hydrological and Hydraulic Analysis System for Integrated Basin Management of Major Rivers in Taiwan, is used to do analysis of peak flow discharges in this study. This software is developed and used by Water Resources Planning Institute, WRA. The rainfall data used in this study is collected at 10 rainfall gauge stations, Xiangyang(2), Wulu, Xinwu(3), Wulin, Younan, Lumin-bridge, Shangli, Guanshan, Taitung and Ruifeng, respectively. The Thiessen's method is adopted to estimate mean maximum 1-day and 2-day rainfalls on the river basins. The K-S (Kolmogorov-Smirnov) test and chi-squared test are utilized to do probability distribution fitting. Using minimum of standard error and minimum sum of squared error as criteria, the results of rainfall frequency analysis show that 3-parameter log-normal distribution is the best goodness of fit for maximum 24-hour and 48-hour rainfall data of the Taitung bridge satation,Luye satation and Luliao satation. The result of frequency analysis of rainfall shows similar results for maximum 48-hour rainfall while the best probability distribution fit is Pearson Tyep III distribution for maximum 24-hour rainfall data of Kanding station. With given design rainfall hyetograph, triangular unit hydrograph, dimensionless unit hydrograph, and observed discharge method, respectively, are used to estimate peak flow discharges for specified return periods. The results show that 100-year peak flow discharges are about 3.9% and 15.24% greater than that of government announcement for maximum 48-hour rainfall at the two control points. Flood-prevent engineering projects are preceded by guidelines. When the amount of rainfall is over design rainfall, non-engineering actions should be considered, such as establishing flood warning systems, emergency evacuation plans, education, etc. That is an issue worth to discuss next.
URI: http://hdl.handle.net/11455/89435
其他識別: U0005-2801201423154400
Rights: 同意授權瀏覽/列印電子全文服務,2017-02-05起公開。
Appears in Collections:水土保持學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-5100042014-1.pdf2.96 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.