Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89438
DC FieldValueLanguage
dc.contributor詹勳全zh_TW
dc.contributor.author黃泰然zh_TW
dc.contributor.authorTai-Jan Huangen_US
dc.contributor.other水土保持學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-07T08:06:10Z-
dc.identifierU0005-1908201514470500zh_TW
dc.identifier.citation參考文獻 1. 楊克君,劉興年,槽叔尤,張之湘,2006,「植被作用下的复式河槽漫灘水流紊動特性」,水利學報,36(10): 1263-1268。 2. 吳沛倫,2001,「不均勻橋墩及群樁基礎之局部沖刷研究」,國立中央大學土木工程研究所碩士論文。 3. 嚴曉嘉,2007,「植生擺設型態水流與床砂變化之渠槽實驗」,國立中興大學水土保持學系研究所碩士論文。 4. 柯柏睿,2014,「剛性非浸沒植生群周圍流場及底床沖淤之試驗研究」,國立中興大學水土保持學系研究所碩士論文。 5. 財団法人整備編,1999,「河川 樹木管理手引 河川区域内樹木伐採・ 植樹基準解説」,山海堂。 6. Bennett, S. J., Pirim, T., & Barkdoll, B. D., (2002), 'Using simulated emergent vegetation to alter stream flow direction within a straight experimental channel,'Geomorphology, 44(1): 115-126. 7. Brookes, A., & Shields, F. D. (Eds.)., (1996), 'River channel restoration: guiding principles for sustainable projects,' Chichester: Wiley: 433. 8. Chen, Z., Ortiz, A., Zong, L., & Nepf, H., (2012), 'The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation,' Water Resources Research, 48(9): WR012224. 9. Darby S. E., (1999), 'Effect of Riparian Vegetation on Flow Resistance and Flood Potential,' Journal of Hydraulic Engineering, Volume 125(5): 443-454. 10. Dey, S., & Sarkar, A., (2006), 'Scour downstream of an apron due to submerged horizontal jets,' Journal of hydraulic engineering, 132(3): 246-257. 11. Elliott, A.H., (2000), 'Settling of Fine Sediment In A Channel with Emergent Vegetation,' Journal of hydraulic engineering: 570-577. 12. Follett E. M. and Nepf H. M., (2012)., 'Sediment patterns near a model patch of reedy emergent vegetation,' Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Geomorphology, 179: 141-151. 13. Ghisalberti, M., & Nepf, H. M., (2002), 'Mixing layers and coherent structures in vegetated aquatic flows,' Journal of Geophysical Research: Oceans (1978–2012), 107(C2): 1-11. 14. Hongwu, T., Wang, H., Liang, D. F., Lv, S. Q., & Yan, L., (2013), 'Incipient motion of sediment in the presence of emergent rigid vegetation,'Journal of Hydro-environment Research, 7(3): 202-208. 15. Järvelä J. (2002), 'Flow resistance of flexible and stiff vegetation: a flume study with natural plants,' Journal of Hydrology, Volume 269, Issues 1-2(1): 44-54. 16. James, C. S., Birkhead, A. L., Jordanova, A. A., & O'sullivan, J. J., (2004),'Flow resistance of emergent vegetation,'Journal of Hydraulic Research, 42(4): 390-398. 17. Jin, R., Cao, Y., Mirkin, C. A., Kelly, K. L., Schatz, G. C., & Zheng, J. G., (2001), 'Photoinduced conversion of silver nanospheres to nanoprisms, ' Science, 294(5548): 1901-1903. 18. Kouwen, N., and Fathi-Moghadam, M., (2000), 'Friction Factors for ConiferousTrees along Rivers,' Journal of Hydraulic Engineering, 12(10): 732-740. 19. Kuhnle, Roger A., Carlos V. Alonso, and F. Douglas Shields Jr., (2002), 'Local scour associated with angled spur dikes,' Journal of Hydraulic Engineering 128(12): 1087-1093. 20. Melville, B. W., and Chiew, Y. M., (1999), 'Time scale for local scour at bridge piers,' Journal of the Hydraulics Engineering, Volume 125: 59-65. 21. Nepf, H. M., (1999), 'Drag, turbulence, and diffusion in flow through emergent vegetation,' Water resources research, 35(2): 479-489. 22. Rahman, M., Murata, H., Nagata, N., & Muramoto, Y., (1998), 'Local scour around spur-dike-like structures and their countermeasures using sacrificial piles,' 水工學論文集, 42: 991-996. 23. Tsujimoto, T., (2000), 'Fluvial processes in streams with vegetation,' J. Hydraulic Res., 37(6): 789-803. 24. Wu, F. C., Shen, H. W., & Chou, Y. J., (1999), 'Variation of roughness coefficients for unsubmerged and submerged vegetation,' Journal of Hydraulic Engineering, 125(9): 934-942.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/89438-
dc.description.abstract天然河道中,當水流經過時,會因為兩岸植生生長茂密受到阻擋通水面積減小,造成底床型態產生變化,底床之沖刷與淤積改變會影響河道的穩定性,以往研究關於植生造成底床沖淤影響多以單密度植生群作探討,本研究延續柯(2014)單密度植生試驗加以擴展,把密度範圍做得更廣,並加入複合式密度加以探討,模擬高莖植物在高灘地對河床的沖淤影響,比較不同密度模型植生對底床沖淤影響差異。 考量植物通常沿兩岸生長,試驗過程將植生配置於渠槽之單側邊壁,試驗流速為趨近泥砂起動之流速,底床之平衡型態以雷射測距儀量測,試驗植生單密度設計為0.04、0.07、0.15、0.22及0.3,複合式密度為0.03、0.05、0.09及0.12,分析結果顯示單一密度0.03到0.12時,無因次化的沖刷坑的影響長度D變化範圍介於1.30-1.50,無因次化的1/2D時沖刷坑影響寬度B變化範圍介於1.11-1.48,無因次化的堆積丘的寬度E變化範圍介於1.18-1.67,無因次化的堆積丘的長度F變化範圍介於0.49-1.81,且B及E與植生密度相比較成正比,而D與F成反比;複合式密度植生群最大沖刷深度都會發生在密度0.03植生區內,無因次的沖刷坑影響長度範圍變化介於1.38-1.49與植生密度相比較成正比,而無因次的堆積區的影響寬度範圍變化介於0.91-1.22與植生密度相比較成反比。zh_TW
dc.description.abstractIn the natural rivers, woody vegetation commonly grows along the riverbank. When flows run through the woody vegetation, the stream processes are markedly affected. Most of the previous studies explored the flow or sediment characteristics of single-density vegetation. This study extended the single-density vegetation experiments of Ke (2014) and used combinations of dual-density vegetation for experiments. The flows induced scour around vegetation zone in different density was investigated. Considering the vegetation grows along the nature bank, the vegetation model is arranged along one side of the flume wall. The experimental flow was steady and flow velocity was adopted to close to the initiation of sediment motion. The bed morphology of equilibrium scour condition was measured by a Laser Distance Meter in the cases of vegetation density equal to 0.04, 0.07, 0.15, 0.22, and 0.3. Test results of dual-density vegetation were made by combinations of vegetation density equal to 0.03, 0.05, 0.09, and 0.12. The vegetation densities were used to examine the effects of the vegetation on the characteristic lengths of the scour hole. In the single density ranging from 0.03 to 0.12, the dimensionless scour length (D) ranges between 1.30-1.50, the dimensionless scour width (B) ranges between 1.11-1.48, the dimensionless accumulation width (E) ranges between 1.18-1.67, and the dimensionless accumulation length (F) ranges between 0.49-1.81. Moreover, B and E are found to be proportional to the vegetation density, and the D and F are inversely proportional to the vegetation density. In the experiments of dual-density vegetation, the maximum scour depths are located in the areas with vegetation density equal to 0.03. The dimensionless scour length ranges between 1.38-1.49 and it is also proportional to the vegetation density. The dimensionless accumulation width ranges between 0.91-1.22 and that is inversely proportional to the vegetation density.en_US
dc.description.tableofcontents目錄 摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VII 照片目錄 VIII 符號說明 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 1.3 本文架構 3 第二章 文獻回顧 6 2.1 水流通過不同模型材質植物 6 2.2 植生附近水流狀況 8 2.3 植生附近底床泥砂沖淤情況 10 第三章 材料與方法 12 3.1 試驗設備 12 3.1.1 人工渠槽 12 3.1.2 試驗儀器 18 3.2 試驗佈置與條件 21 3.2.1 模型材料與設計 21 3.2.2 試驗砂規格 23 3.2.3 模型密度 24 3.2.4 儀器架設 28 3.2.5 坐標系統 28 3.2.6 試驗條件 29 3.3 試驗流程 31 第四章 結果分析與討論 34 4.1 沖刷歷程 34 4.2 底床型態 52 4.2.1 單一密度沖淤比較 52 4.2.2 複合式密度沖淤比較 63 第五章 結論與建議 70 5.1 結論 70 5.2 建議 71 參考文獻 72   圖目錄 圖1 1研究流程圖 5 圖2 1 Follett & Nepf (2012)所觀察植生區地形圖 11 圖3 1試驗渠槽示意圖 13 圖3 2渠槽流量率定曲線圖 17 圖3 3試驗砂粒徑分布曲線 23 圖3 4單一密度模型配置圖 26 圖3 5複合式密度模型配置圖 27 圖3 6坐標系統示意圖 28 圖3 7試驗流程圖 33 圖4 1 Φ=0.05&0.03各時段試驗照片 36 圖4 2 Φ=0.09&0.03各時段試驗照片 38 圖4 3 Φ=0.12&0.03各時段試驗照片 40 圖4 4 Φ=0.05&0.03植生模型編號 41 圖4 5Φ=0.05&0.03沖刷發展示意圖 43 圖4 6 Φ=0.05&0.03各模型植生棒周圍沖淤歷程圖 44 圖4 7 Φ=0.09&0.03植生模型編號 44 圖4 8Φ=0.09&0.03沖刷發展示意圖 46 圖4 9 Φ=0.09&0.03各模型植生棒周圍沖淤歷程圖 47 圖4 10 Φ=0.12&0.03植生模型編號 47 圖4 11Φ=0.12&0.03沖刷發展示意圖 50 圖4 12 Φ=0.12&0.03各模型植生棒周圍沖淤歷程圖 50 圖4 13植生各區的沖淤比較 51 圖4 14(1) 各密度平衡地形圖 56 圖4 14(2) 各密度平衡地形圖………………………………………...57 圖4 14(3) 各密度平衡地形圖………………………………………...58 圖4 15植生群沖刷及堆積尺度示意圖(在密度0.03到0.12) 59 圖4 16(1) 密度0.03到0.12沖淤因子與密度關係 61 圖4 16(2) 密度0.03到0.12沖淤因子與密度關係………………….62 圖4 17 單一密度底床沖淤分佈圖 63 圖4 18 各複合式密度平衡地形圖 65 圖4 19 複合式植生Y剖面的示意圖 66 圖4 20 Y=5cm複合式密度底床沖淤分佈圖 68 圖4 21 Y=10cm複合式密度底床沖淤分佈圖 68 圖4 22 Y=15cm複合式密度底床沖淤分佈圖 69 圖4 23 Y=20cm複合式密度底床沖淤分佈圖 69   表目錄 表3 1植生的各種試驗方法 25 表3 2泥砂臨界起動公式 29 表3 3臨界起動流速值 30 表3 4 柯(2014)試驗條件 30 表3 5 試驗條件 31 表4 1 單一密度植生各組試驗時間與最大沖刷深度 34 表4 2 複合式密度植生各組試驗時間與最大沖刷深度 35 表4 3 Φ=0.05&0.03各模型植生棒周圍最大沖刷深度 42 表4 4 Φ=0.05&0.03各模型植生棒周圍各時段的沖淤變化速率 44 表4 5 Φ=0.09&0.03各模型植生棒周圍最大沖刷深度 46 表4 6 Φ=0.09&0.03各模型植生棒周圍各時段的沖淤變化速率 47 表4 7 Φ=0.12&0.03各模型植生棒周圍最大沖刷深度 49 表4 8 Φ=0.12&0.03各模型植生棒周圍各時段的沖淤變化速率 50 表4 9密度0.03到0.12沖淤因子比較 60   照片目錄 照片3 1入口處阻擋物減緩水流沖擊力 14 照片3 2網狀鋼板消除小渦流 14 照片3 3蜂巢式整流器 14 照片3 4入口整流設施全景 14 照片3 5 水流自入口至試驗段的完全發展段 15 照片3 6光滑底床黏上石英砂增加底床糙度 15 照片3 7試驗段底床可變動深槽區 16 照片3 8 可調式尾水堰板 16 照片3 9尾水出口與蓄水槽 16 照片3 10 蓄水槽 17 照片3 11 雷射測距儀 18 照片3 12 雷射測距儀背面 18 照片3 13針尺主尺與副尺刻度 19 照片3 14針尺安裝於活動台車上 19 照片3 15 尺條軌道與X軸參考距離 20 照片3 16 試驗台車與滑臺 20 照片3 17 螺桿控制Y、Z移動 20 照片3 18 台車全貌 20 照片3 19 模型鋼板底座 22 照片3 20 模型植生鋼棒 22 照片3 21 鋼棒底部可鎖於鋼板上 22 照片3 22 鋼棒固定台 23 照片3 23 鋼棒上刻劃刻度 23zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-08-21起公開。zh_TW
dc.subject試驗zh_TW
dc.subject渠槽zh_TW
dc.subject雙密度植生zh_TW
dc.subject沖刷zh_TW
dc.subjectexperimenten_US
dc.subjectflume testen_US
dc.subjectdual-density vegetationen_US
dc.subjectscouren_US
dc.titleExperimental Study on Flows Induced Scour around Vegetation Patch with Different Densitiesen_US
dc.title水流通過不同密度植生群周圍沖刷之試驗研究zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-08-21zh_TW
dc.date.openaccess2018-08-21-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextrestricted-
Appears in Collections:水土保持學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102042009-1.pdf5.62 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.