Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89441
標題: Change of groundwater table for different soils in coastal area under the tide waves and rainfall events
海岸地區潮汐與降雨和土壤差異對非拘限含水層的地下水位變化
作者: 黃靖倫
Jing-Lun Huang
關鍵字: 地下水位;潮汐波動;降雨;傾斜含水層;groundwater level;tidal wave;sloping aquifer
引用: 1. 田傑仁(2013),「層狀地質介質溶質傳輸之解析解」,碩士論文,中央大學應用地質研究所,中壢。 2. 台灣地質圖(1999),經濟部中央地質調查所地質圖。 3. 劉致翔(2011)「地下水補注對沿海含水層海水入侵整治之數值分析」,碩士論文,國立成功大學水利及海洋工程學系碩博班,台南。 4. 徐筱婷(2013),「降雨及潮汐衍生之非拘限含水層地下水位變化」,碩士論文,中興大學水土保持學研究所,台中。 5. 蕭惠如(2013),「潮汐衍生之海岸含水層地下水位波動」,碩士論文,中興大學水土保持學研究所,台中。 6. 陳怡睿、蔡長明、紀雲曜、曾志民、黃肇新、薩支平(2008),「災害防救科技學程課程實驗教材」,長榮大學專業學程與通識課程,台南。 7. 石棟鑫(2001),「台灣地區颱風雨降雨型態之分析研究」,碩士論文,中央大學土木工程研究所,中壢。 8. 萬鑫森(2005),「基礎土壤物理學」,茂昌圖書有限公司 9. Asadi-Aghbolaghi M., Chuang M.H., Yeh H.D. (2012), 'Groundwater response to tidal fluctuation in a sloping leaky aquifer system,' Applied Mathematical Modelling 36, 4750–4759. 10. Brutsaert W. (1994), 'The unit response of groundwater outflow from a hillslope,' Water Resources Research 30(10), 2759-2763. 11. Boussinesq J. (1877)' Essai sur la theorie des eaux courantes, M'em.' Pr'esent'es divers savants Acad. Sci. Inst. France, 23,1-680. 12. Bansal, R. K. & S. K. Das, (2011), 'Response of an unconfined sloping aquifer to constant recharge & seepage from the stream of varying water level,' Water Resour Manage 25: 893–911. 13. Chapman T.G. (1980), 'Modeling groundwater flow over sloping beds,' Water Resources Research 16(6), 1114-1118. 14. Childs E.C. (1971), 'Drainage of groundwater resting on a sloping bed,' Water Resource Research 7(5), 1256-1263. 15. Dagan G. (1967), 'Second order theory of shallow free surface flow in porous media,' Q.J. Mech. Appl. Math. 20(4), 517-526. 16. EPA(1986)'Quality Criteria for Water, ' Office of Water Regulation & Standards Washington. DC 20460 17. Fredlund , D. G., H. Rahardjo (1993), 'Soil mechanics for unsaturated soils, ' Wiley-Interscience Publication. 18. Harrison, B. A. & Blight, G. E. (2000), 'The use of indicator tests to estimate the drying leg of the soil-water characteristic curve models,' Asain Conference on Unsaturation Soil, Balkema,Rotterdam 19. Hsieh, P. C. Hsu, H. T. Liao, C. B. and Chiueh, P. T.(2015), 'Groundwater response to tidal fluctuation and rainfall in a coastal aquifer,' Journal of Hydrology, (521):132–140 20. Johnson, A. I. (1967), 'Specific yield compilation of specific yields for various materials', U.S. Government Printing Office, Washington, D.C. 21. Jeng, D.S., B.R. Seymour, D.A. Barry, L. Li & J. Y. Parlange (2000), 'New approximation for free surface flow of groundwater: capillarity correction,' Advances in Water Resources, 28: 1032–1039. 22. Kazezyılmaz-Alhan C. M. (2012), 'An improved solution for diffusion waves to overland flow' Applied Mathematical Modelling, 36: 1465-4172 23. Li L., D.A. Barry, F. Stagnitti, J.Y. Parlange & D.S. Jeng (2000), 'Beach water table fluctuations due to spring-neap tides: moving boundary effects,' Advances in Water Resources, 23:817–824. 24. Mahdi, A. A., M. H. Chuang & H. D. Yeh (2012), 'Groundwater response to tidal fluctuation in a sloping leaky aquifer system,' Applied Mathematical Modelling, 36(10): 4750–4759. 25. Mackay, J. D., C. R. Jackson, L. Wang (2014), 'A lumped conceptual model to simulate groundwater level time-series' Environmental Modelling & Software, 61: 229-245. 26. Nielsen, P., J. D. Fenton., R. A. Aseervatham, P. Perrochet, (1997), 'Watertable waves in aquifers of intermediate depths,' Advances in Water Resources 20: 37–43. 27. Özisik, M. N. (1968), Boundary value problems of heat conduction, Dover Publications, INC., New York. 28. Parlange J.Y., Stagnitti F., Starr J.L., Braddock R.D. (1984), 'Free-surface flow in porous media & periodic solution of the shallow-flow approximation,' Journal of Hydrology 70, 251-263. 29. Polubarinova-Kochina P.Y. (1962), 'Theory of Ground Water Movement', pp.404-430, Princeton University, New Jersey, USA. 30. Robinson, M. A. & D. L. Gallagher (1999), 'A model of ground water discharge from an unconfined coastal aquifer,' Groundwater, 37(1): 80–87. 31. Sun, H. (1997), 'A two-dimensional analytical solution of groundwater response to tidal loading in an estuary,' Water Resources Research 33(6): 1429–1435. 32. Smedema, L.K. & D.W. Rycroft, (1983) 'Land Drainage -- Planning and Design of Agricultural Drainage Systems,' Corneil University Press, Ithaca, NY., 376 pp 33. Teo, H.T. (2003), 'A new analytical solution for water table fluctuations in coastal aquifers with sloping beaches,' Advances in Water Resources, 26: 1239–1247 34. Zissis, T. S., I. S. Teloglou & G. A. Terzidis (2001), 'Response of a sloping aquifer to constant replenishment and to stream varying water level,' Journal of Hydrology, 243(3-4): 180–191.
摘要: 
台灣沿岸地區由於農漁業灌溉及養殖,一直以來都有嚴重超抽地下水現象,土層下水位因含水量大量抽離而造成地層下陷、海水倒灌、土壤鹽鹼化等等的問題。
海岸地區地下水經常受到潮汐效應的影響,探討地下水補注對防止海水入侵含水層的影響得知,當補注量提高,能有效阻擋海水推進至內陸。因此當海岸地區受到降雨效應,入滲到地底的水量則更會影響到含水層的水位,然而當潮汐與降雨同時發生,兩種因子對地下水位的影響關係為何?孰重孰輕?不同海岸土壤下,水位會有何種趨勢?是本研究欲探討的課題。研究中將Boussinesq 方程式線性化後建立控制方程式與邊界條件,再以解析模擬受到潮汐效應和降雨效應二因子影響的地下水位變化情形。
首先從Dupuit-Forchheimer假設切入主題,將海岸地區設為潮汐效應與降雨效應二共同作用區,應用廣義積分轉換法(General Integral Transforms Technique)推導解析解,分析含水層底部不透水底床傾角改變之地文因子、海岸邊坡傾角的變動與海岸地區的土壤類型,以期充分明瞭海岸地區地下水水位變化。本研究以新解析方法模擬海岸地下水位的變動,為半無窮域解析類型,並以時間線性降雨雨型與時變性降雨雨型討論非拘限含水層的水位變化量。

Agricultural pursuits and fisheries have extracted groundwater seriously in Taiwan coastal area that bring about land subsidence, salt-water encroachment and soil salinization problems.
Coastal aquifers are frequently affected by tidal effects, to explore the groundwater recharge figuring out that is effectively to prevent the sea water intrusion inland when recharge amount is increased. Therefore, the replenishment that effects of rainfall in coastal area will makes aquifer water level having more increase volume. When the effect of tide wave and the effect of rainfall occur in the same time, what is the relationship between these two impact factors? Which one has more influence than the other? What will water level trends is in different soils? Is the subject of this study was to investigate. First, we linearize the Boussinesq equation and build the governing equation with the corresponding boundary conditions. Second, the fluctuation of groundwater level due to the tidal waves and time variability rainfall is solved by an analytical approach.
The solution is based on the Dupuit-Forchheimer assumptions, separated into tidal waves part and rainfall part using general integral transforms technique to solve the analytical question, on the other hands studying the changes of the sloping bed with variation of coastal slope and variety of soil types to fully understand the variation of groundwater table in coastal aquifer. This research is to explore a new analytical approach to simulate groundwater table near coastal areas, which is of the semi-infinite domain type, and under the time-variant rainfall events and linear rainfall for different soils.
URI: http://hdl.handle.net/11455/89441
其他識別: U0005-2008201515464000
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-26起公開。
Appears in Collections:水土保持學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102042014-1.pdf4 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.