Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89445
標題: Verification of Slopeland Utilizable Limitation Using Environmental Indices
環境指標應用於山坡地土地可利用限度查定之研究
作者: 張庭瑜
Ting-Yu Chang
關鍵字: 山坡地土地可利用限度查定;環境指標;地理資訊系統;Classification of Slopeland Utilization Limitation;Topographic Wetness Index;Geographic Information System
引用: 英文部分: 1.ARC/INFO Version 6.1 (1992). 'Environmental System,' Research Institute. Rcdlamls. Calif. 2.Batson, R. M., K. Edwards, and E. M. Eliason (1975), 'Computer - generated shaded-relief images,' Journal of Research of the US Geological Survey, 3, p. 401–408. 3.Bhagat, R. M., S. Sharda, C. Sood, R. S. Rana, V. Kalia, S. Pradhan, W. Immerzeel, and B. Shrestha (2009), 'Land suitability analysis for cereal production in Himachal Pradesh(India) using geographical information system,' J. Indian Soc. Remote Sens., 37: 233–240. 4.Bobade, S. V., B. P. Bhaskar, M. S. Gaikwad, P. Raja, S. S. Gaikwad, S. G. Anantwar, S. V. Patil, S. R. Singh, and A. K. Majia (2010), 'A GIS-based land use suitability assessment in Seoni district, Madhya Pradesh, India,' Tropical Ecology, 51(1): 41-54. 5.Boer, M., G. D. Barrio, and J. Puigdefiibregas (1996), 'Mapping soil depth classes in dry Mediterranean areas using terrain attributes derived from a digital elevation model,' Geoderma 72: 99-118. 6.Bourennane, H., D. King, and A. Couturier (2000), 'Comparison of kriging with external drift and simple linear regression for prediction soil horizon thickness with different sample densities,' Geoderma, 97: 255-271. 7.Carson, M. A., and M. J. Kirkby (1972), 'Hillslope Form and Process,' Lodon Cambridge University Press. 8.Carter, J. R. (1992), 'The effect of data precision on the calculation of slope and aspect using gridded DEMs,' Cartographica, 29: p. 22–34. 9.Collins, A. G. (1975), 'Geochemistry of oilfield waters,' Development in Petroleum Science, vol. 1 Elsevier, Amsterdam. 10.Cromley, R. (1992), 'Digital Cartography,' Prentice-Hall, New York. 11.Davis, J. C. (1973), 'Statistics and Data Analysis in Geology,' Wiley, Chichester: p. 550. 12.Delmonaco, G., G. Leoni, C. Margottini, C. Puglisi, and D. Spizzichino (2003), 'Large scale debris-flow hazard assessment: geotechnical approach and GIS modelling,' Nat. Hazards Earth Syst. SCI., 3, 443–455. 13.Dietrich, W. E., M. L. Hus, and D. R. Montgomery (1995), 'A process-based model for colluvial soil depth and shallow landsliding using digital elevation data,' Hydrological Process, 9, 383-400. 14.Eyton, J. R. (1991), 'Rate-of-change maps,' Cartography and Geographic Information Systems, 18 (2): p. 87–103. 15.Foster, G. R. (1982), 'Modeling the erosion prcess,' The American Society of Agricultural Engineers Monograph, 5, 297-380. 16.Heimsath, A. M., W. E. Dietrich, K. Nishiizumi, and R. C. Finkel (1997) 'The soil production and landscape equilibrium,' Nature, 388: 358-361. 17.Ho, J. Y., T. L. Kwan, T. C. Chang, Z. Y. Wang, Y. H. Liao (2012), 'Influences of spatial distribution of soil thickness on shallow landslide prediction,' Engineering Geology 124 : 38–46. 18.Horn, B. K. P. (1981), 'Hill shading and the reflectance map,' Proceedings of the IEEE, 69 (1): p. 14–47. 19.Hornung, M. (1990), 'Measurement of nutrient losses resulting from soil erosion,' Nutrient Cycling in Terrestrial Ecosystems, London: Elsevier, 80-102. 20.Jensen, J. R. (1996), 'Introductory Digital Image Processing: A Remote Sensing Perspective,' Prentice Hall, New Jersey. 21.Kirkby, M. J. and Weyman, D. R. (1974), 'Measurements of contributing area in very small drainage basins,' Seminar Series B, No. 3. Department of Geography, University of Bristol, Bristol. 22.Krezoner, W. R., K. R. Olson, W. L. Banwart, and D. L. Johnson (1989), 'Soil, landscape , and erosion relationships in northwest Illinois watershed,' Soil Science Society American Journal, 53: 1763-1711. 23.Lee, K. T., and J. Y. Ho (2009), 'Prediction of landslide occurrence based on slope-instability analysis and hydrological model simulation,' Journal of Hydrology, 375: 489-497. 24.Loughran, R. J. (1989), 'The measurement of soil erosion,' Progress in Physical Geography, 13(2): 216-232. 25.Moore, I. D. and J. R. Burch (1986), 'Sediment transport capacity of sheet and rill flow: Application of unit stream power theory,' Water Resource Research, 22:1350-1360. 26.O'Neill, M. P., and D. M. Mark (1987), 'On the frequency distribution of land slope,' Earth Surface Processes and Landforms, 12: p. 127-136. 27.Peucker, T. K., and D. Douglas (1975), 'Detection of surface-specific points by parallel processing of discrete terrain elevation data,' Computer Graphics and Image Processing, 4 (4) :375-387. 28.Raina, P., D. C. Joshi, and A. S. Kolarkas (1991), 'Land degradation mapping by remote sensing in the arid region of India,' Soil Use and Management, 7(1): 47-52. 29.Renard, K. G., G. R. Foster, G. A. Weesier, and G. P. Porter, (1991), 'RUSLE: revised universal soil loss equation,' Journal of Soil and Water Conservation, 46(1): 30-33. 30.Renard, K. G., and J. R. Freimund (1994), 'Using monthly precipitation data to estimate the R-factor in the revised USLE,' Journal of Hydrology, Vol. 157, p. 287-306. 31.Richards, J. A. (1986), 'Remote sensing digital image analysis—An introduction,' Springer-Verlag, Berlin. 32.Ritchie, J. C., and J. B. Murphey (1990), 'Application of radioactive fallout caesium-137 for measuring soil erosion and sediment accumulation rates and patterns: review,' Journal of Environmental Quality, 19:215-33. 33.Ritchie, J. C., J. B. Murphey, E. H. Grissinger, and J. D. Garbrecht, (1993), 'Monitoring streambank and gully erosion by airborne laser. In: Hadley, R. F., and Mizuyama, T. (eds.) sediment Problems: Strategies for Monitoring, Prediction, and Control),' International Association of Hydrological Sciences Publication, 217,161-166. 34.Robinson, A. R. (1977), 'Relationships between soil erosion and sediment delivery.In:Erosion and Solid Matter Transport in Inland Water,'International Association of Hydrological Sciences Publication, 122: 159-167. 35.Rozenstein O., and K. Arnon (2011), 'Comparison of methods for land-use classification incorporating remote sensing and GIS inputs,' Applied Geography, 31: 533-544. 36.Saulnier, G. M., C. Obled, and K. Beven (1997), 'Analytical compensation between DTM grid resolution and effective values of saturated hydraulic conductivity within the TOPMODEL framework,' Hydrol. Process., 11: 1331-1346. 37.Sharpnack, D.A., G. Akin(1969), 'An algorithm for computing slope and aspect from elevations,' Photogrammetric Engineering, 35 (3): p. 247–248. 38.Tülay C., and A. Cengiz (2011), 'Application of analytical hierarchy process and geographic information systems in land-use suitability evaluation: a case study of Dümrek village,' International Journal of Sustainable Development & World Ecology, 16(4): 286–294. 39.Walling, D. E. (1983), 'Sediment delivery problem,' Journal of Hydrology, 65: 209-237. 40.Walling, D. E. (1988), 'Measure sediment yield from river basin,' Soil Erosion Research Methods, Iowa: SWCS, 39-74. 41.Wischmeier, W. H., and Smith, D. D., 1965, Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains – Guide for Selection of Practices for soil and Water Conservation. U.S. Department of Agriculture, Agricultural Handbook No. 282. 42.Wischmeier, W. H., and Smith, D. D., 1978, Predicting Rainfall Erosion Losses - A Guide to Conservation Planning. U.S. Department of Agriculture, Agricultural Handbook No. 537. 43.Young, R. A., and C. A. Onstad, (1987), 'Soil erosion: measurement and prediction.' In:Harlin,J.M. and Berardi,C.M.(eds.) Agricultural Soil Loss: Process, and Pros Pects, Boulder, Colorado: Westview, 91-111. 44.Ziadat, F. M. (2010), 'Prediction of soil depth from digital terrain data by integrating statistical and visual approaches,' Pedosphere 20(3): 361–367. 中文部分: 1.水土保持局(2012),「水土保持技術規範」。 2.何春蓀(1981),「普通地質學」,國立編譯館。 3.台北市建設局(2003),「山坡地土地可利用限度查定作業數位化暨管理作業系統報告書」。 4.台灣電力公司(2007),「用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段-96年度工作計畫」。 5.李正兆(2009),「整合地電阻法與水文地質調查於崩塌地滑動之機制研究」,國立中央大學地球物理研究所博士論文。 6.李建堂(1997),「土壤沖蝕的量測方法」,國立臺灣大學地理學系地理學報,23: 89-106。 7.林俐玲、王兆文、沈哲緯(2011),「運用羅吉斯迴歸分析山坡地土地可利用限度查定分類」,水土保持學報,43(3): 277-296。 8.林俐玲、王兆文、沈哲緯、陳品岡、翁志成(2011),「應用支持向量機探討山坡地土壤沖蝕程度之研究」,水土保持學報,43(1): 49-68。 9.邱景升(2008),「應用多元方格網模式比較坡度計算法差異之研究」,地理學報,51:47-63。 10.洪崇仁(2007),「臺灣山坡地可利用限度分類標準實務性檢討之研究」,國立中興大學水土保持學系碩士論文。 11.洪詮斌、鄭皆達、黃晴曉、黃育珍(2008),「山坡地潛在地滑區土地利用可行性研究-以臺中市大坑地區為例」,水土保持學報40(2):247-268。 12.張仲民(1987),「普通土壤學」,國立編譯館.。 13.張育誠(2002),「台東縱谷(瑞穗至池上地區)之地電研究」,國立中央大學地球物理研究所碩士論文,桃園,臺灣。 14.陳文福、宋文彬、馮正一、陳啟天(2006),「應用DEM於山坡地土地可利用限度分類查定之研究」,水土保持學報,38(2):177-194。 15.陳文福、林憶志、陳明賢(2009),「地理統計方法應用於山坡地土地可利用限度分類精確化查定土壤因子之研究」,水土保持學報,41(3):297-310。 16.陳志彰(2005),「山坡地可利用限度之查定及土地利用合理性之研究」,國立成功大學地球科學研究所碩士論文。 17.陳信雄(1992),「防砂工程學」,明文書局,台北。 18.陳敏祥、劉進金(2012),「不同坡度演算法對坡地可開發面積之影響-以新店地區為例」,臺灣地理資訊學會年會暨學術研討會,台中。 19.陳錦嫣(2007),「GIS與空間決策分析 Arc GIS 入門與進階」,p.405。 20.許正一、陳尊賢(1994),「地下水位變動與土壤氧化還原形態特徵關係」,土壤肥料通訊,42:21-36。 21.許晃雄(2011),「台灣氣候變遷科學報告2011」,行政院國家科學委員會台灣氣候變遷推估與資訊平台建置計畫。 22.郭育聰(2001),「非均向電性介質的模擬研究」,國立中正大學應用地球物理研究所碩士論文,嘉義,臺灣。 23.黃俊德(1979),「台灣降雨沖蝕指數之研究」,中華水土保持學報,10(1):127-144。 24.黃國楨、王韻皓、焦國模(1996),「植生指標於SPOT衛星影像之研究」,臺灣林業,22(1):45-52。 25.楊志堅、張家榮(2000),「群集分析介紹」,進修通訊年刊,6:42-49。 26. 彭文飛(2001),「以位移法分析自然邊坡在地震時之破壞行為的初步探討」,國立成功大學資源工程研究所碩士論文,台南,臺灣。 27.彭文飛、王建力、陳時祖、李馨慈(2007),「考慮地震波之地形放大效應製作山崩潛勢圖」,礦冶雜誌,52(1):112-119。 28.萬鑫森、黃俊義(1981),「台灣西北部土壤沖蝕及流失量之估算」,中華水土保持學報,12(1):45-52。 29.萬鑫森、黃俊義(1989),「台灣坡地土壤沖蝕」,中華水土保持學報,20(1):17-45。 30.廖坤榮(2009),「山坡地管理之政府職能與角色分析」,行政院研考會委辦臺灣公共治理研究中心,p.65-117。 31.廖靜慧、林俐玲(2002),「通用土壤流失公式(USLE)地形因子(LS)計算方式之探討」,水土保持學報,44(4):381-390 32.薛維欣(2000),「地質圖之自動化製作探討」,國立交通大學土木工程學系碩士論文,新竹,臺灣。 33.蔡呈奇(2002),「應用地域分析與地理資訊系統繪製土壤圖以臺灣北部火山灰土壤為例」,國立臺灣大學農業化學研究所博士論文,台北,臺灣。 34.賴進貴(1996),「數值高度模型與地形計測研究資料解析度問題」,地理學報 20:61-73。 35.謝明憲(1994),「圖基篇:不規則三角網資料結構」,資訊與電腦,p.102-103。 36.蘇政宇、鄭旭涵、林家榮、林昭遠(2007),「地理資訊於土地可利用限度之劃定與土地利用適宜性之評估」,水土保持學報,39(4):333-354。
摘要: 
臺灣山坡地約占全島總面積之73%,蘊含重要之自然資源。政府為推廣土地合理利用及水土資源保育,自民國50年起,開始推動水土保持及山坡地土地可利用限度分類查定業務,並於民國65年頒布「山坡地保育利用條例」。政府透過山坡地土地可利用限度查定工作之平均坡度、土壤有效深度、土壤沖蝕程度及母岩性質等四項查定基準,進行全臺山坡地土地可利用限度分類及查定及工作,以兼顧山坡地開發利用、水土資源永續利用及國土保安。
然極端降雨事件逐年增加,面對集水區大範圍之崩塌區位,在有限人力、物力下,無法有效全面執行,因此如何於災後快速檢討查定結果極為重要。本研究以陳有蘭溪集水區為樣區,應用數值高程模型分析平均坡度,而地形濕度指數及土壤沖蝕量則分別對應土壤有效深度及土壤沖蝕程度,據此輔助判定查定結果,另配合整體精確度及現場調查探討其指標之良窳。
結果顯示,平均坡度、土壤有效深度及土壤沖蝕程度等查定因子判定之整體精確度分別為42.5%、57.1%及55.4%,而山坡地可利用限度查定結果之整體精確度則可達78.6%,另崩塌區位之土壤有效深度、土壤沖蝕程度及母岩性質等級皆為最差,因此可利用衛星影像萃取災害地圖,並輔助加強保育地之判定。根據現場調查顯示,環境指標及災害地圖皆可準確判釋實地現場狀況,可見遙測技術及地理資訊系統有助於災後山坡地土地可利用限度查定結果之滾動式檢討及判定。

The slopeland in Taiwan is about 73% and abundant in natural resources. In order to suitable land development and soil and water resources conservation, government had started to the work of slopeland utilizable limitation verification in 1961. In 1976, 'Slopeland Conservation and Utilization Act' was promulgated to standardize the slopeland utilization limitation according to the criteria of average land slope, effective soil depth, degree of soil erosion, and parent rock for better balance in slopeland development and natural resources conservation.
Since the broad distributions of landslide in a watershed due to extreme rainfall events increasing yearly, the verification work unable to be implemented effectively under limitation of manpower and resources. Therefore, a rapid post-disaster classification of slopeland utilization limitation is crucial. In this study, satellite imageries and digital elevation model of Chen-You-Lan watershed were applied to analyze average slope and the related environmental indcies. Effective soil depth, degree of soil erosion and property of parent rock can be interpreted using topographic wetness index and remote sensing. Overall accuracy and field survey were also employed to verify the results in this study.
The results show that the overall accuracies of average land slope, effective soil depth, and degree of soil erosion were 42.5%, 57.1%, and 55.4%, respectively, and the overall accuracy of slopeland utilization limitation verification can reach 78.6%. Effective soil depth, degree of soil erosion, and property of parent rock for the disaster areas can be categoried into the worst level and should be conserved intensively. Maps of disaster derived from satellite imageries could be effectively used to delineate the areas need to be conserved intensively. Results of field survey show that the disaster hotspots can be examined accurately referred to environmental index and disaster map. Hence, technique of remote sensing and geographic information systems can be as effective tools for rapid classification of post-disaster slopeland in utilization limitation verification.
URI: http://hdl.handle.net/11455/89445
其他識別: U0005-1008201514152800
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-13起公開。
Appears in Collections:水土保持學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102042030-1.pdf4.45 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.