Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89447
標題: Study on the Aeolian Sand Control Effect of Sand Moisture
砂體含水率對飛砂抑制效益之研究
作者: 蔡易衡
Yi-Heng Tsai
關鍵字: 砂粒含水率;飛砂;風洞;soil moisture content;aeolian sand;wind tunnel
引用: 1. 朱佳仁(2006),「風工程概論」,科技圖書,第 241-243 頁。 2. 林信輝(1979),「砂體含水率與飛砂量之關係試驗」,中華水土保持學報,第十卷,第二期,第 173-193 頁。 3. 林俐玲、董小萍(2002),「土壤物理學實習」。 4. 吳正(1965) 新疆和田地區沙土及土壤風蝕的初步研究」,中國地理學會地貌學術討論會:125~127。 5. 邱盈達(2008),「堆砂籬定砂功能之探討」,國立中興大學水土保持學系研究所碩士論文。 6. 黃隆明(2010),「飛砂移動機制之風洞試驗」,國立中興大學農林學報,第五十九卷,第三期,第 199-213 頁。 7. 黃隆明(2011),「台灣中部河口飛砂及揚塵之調查與研究」,水土保持學報,第四十三卷,第三期,第 259-276 頁。 8. 游繁結(1987),「台灣西海岸砂粒性狀之探討」,國立中興大學水土保持學報第十九卷,第 37-50 頁。 9. 游 繁 結 (1989),「 濁 水 溪 河 口 飛 砂 量 之 調 查 與 研 究 」, 農林學報38(1):75~104。 10. 萬鑫森(1987),「基礎土壤物理學」,國立編譯館,第 59-70 頁。 11. 鄭夙雯(2002),「洗街車洗塵效率影響參數探討與洗塵模式建立」,國立中山大學環境工程研究所碩士論文。 12. 蔡明華(1972),「崎頂海岸沙丘地土壤物理及化學性測定研究」,砂丘利用第 73 期第三號。 13. Armitt, J. and J.Couniham(1968), The Simulation of the Atmospheric Environment, Atmospheric Environment, Vol.2,49-71 14. Bagnold, R.A. (1941), The Physics of Blown Sand and Desert Dunes, Methuen, Reprinty by Chapman and Hall, p.265. 15. Bagnold, R.A. (1977), 'Wind Tunnel Observation?, JAPASA. 16. Blake, G.R. & K.H. Hartge (1986), particle density, In A. Klute (ed.)Methods of soil analysis, Part 1. Physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA. Madison, WI, USA, p.377-381. 17. Bisal. F and J.Hsieh(1996), Influence of Moisture on Erodibility of Soil by Wind, soil science,(3):143~146 18. Blanco Humberto, Lal Rattan.(2008), Principles of Soil Conservation and Management, Springer Science:55~80. 19. Cockrell, D.J. and S.E. Lee(1964), Methods and Consequence of Atmospheric Boundary Layer Simulation, Paper 13-AGARD Conference Processing No.48 on Aerodynamics of Atmospheric Shear Flows, Munich. 20. Counihan, J.(1970), An Improved Method of Simulation an Atmospheric Boundary Layer, Atmospheric Environment Vol.4, 159-275. 21. Cornelis W.M., Gabriels D.(2005), Optimal Windbreak Design for Wind-Erosion Control, Journal of Arid Environments (61):315~332. 22. Dong Zhibao (2003), Aeolian sand transport : A Wind Tunnel Model,Sedimentary Geology 161:71~83. 23. Gee G.W. & J.w. Bauder (1986), Particle-size Analysis, In A. Klute(ed.) Methods of soil analysis, Part 1. Physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA. Madison, WI, USA, p.383-385. 24. Horikawa, K. and H. W. shen(1960), Sand Movement by Wind Action on the Characteristics of Sand Traps, Beach Erosion Board Crops of Engerineers, Technical Memorandum. No.119. 25. Johnson, J.W. (1965), 'Sand Movement on Costal Dunes?, Proc, Federal Inter-Agency Sedimentation Conference, US Dept. Agri. Misc. Publ, 970:747-755. 26. Prandtl, L. 1925. Uber die ausgebildete Turbulenz. ZAMM 5, pp. 136-139. 27. Walter H. Gardner (1986), Water Content, In A. Klute (ed.) Methods of soil analysis, Part 1. Physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA. Madison, WI, USA, p.493-541. 28. 行 政 院 環 保 署 環 境 檢 驗 所 (2013) 「 土 壤 採 樣 法 」, http://www.niea.gov.tw/analysis/method/m_n_1.asp?m_niea=S102.62 B。 29. 田中貞雄(1954),風蝕防止關研究,農業氣象,10(1 , 2): 57~59. 30. 行政院環保署(2010)「河川疏濬砂石作業空氣污染防制標準作業模式」http://stationary.estc.tw/public/Data/142617203971.pdf 。 31. 臺灣河川復育網: http://trrn.wra.gov.tw/trrn/index.html。
摘要: 
本研究為瞭解砂體含水率對飛砂抑制之效益,選定大安溪鄰近出海口處,飛砂及揚塵危害嚴重地點,採集現地砂粒樣本後,攜回實驗室進行砂粒物
性分析,並於風洞從事砂粒起動風速、含水率、及含水率抑制時間觀測,將彙整數據後,做減砂效益及灑水抑制成本評估;物性分析結果顯示,大安溪土壤質地為級配不良的砂土,自然風乾時含水率約為 0.5%,平均粒徑為0.313mm,密度為 2.72g/cm3,形狀係數為 0.9794。
在風洞試驗方面,當含水率為 0.13%時,砂粒之起動風速隨粒徑遞減而遞降,粒徑在 2~0.84 mm、0.84~0.42 mm、0.42~0.25 mm、0.25~0.15 mm及 0.15 mm 以下之砂粒,其起動風速分別為 13~14 m/s、7~8 m/s、6~7 m/s、4~5 m/s 及 4 m/s 以下;砂粒之起動含水率隨粒徑遞減而遞增,當各粒徑之砂粒在起動風速分別為 14m/s、8m/s、7m/s、5m/s 及 4m/s 時,粒徑在 2~0.84mm、0.84~0.42 mm、0.42~0.25 mm、0.25~0.15 mm 及 0.15 mm 以下之砂粒,其起動含水率分別約為 0.475% 、0.730%、2.045%、2.115%及 2.255%。
此外大安溪砂粒在 1/3Bar 下重力水排除後,其毛細吸著有效含水率約為2.98%,以此含水率灑水抑制砂粒運動,其減砂效果隨風速增加而減小,抑制砂粒運動時間亦隨風速增加而縮短;在平均風速 10m/s 下,灑水至有效含水率後,吹風 180 分鐘~190 分鐘達到飛砂量開始大幅增加臨界點,係以此時段作為補充灑水參考依據,試算砂體灑水恢復有效含水率之成本,隨著不同風速 15 m/s、14 m/s、13 m/s、12 m/s、11 m/s、10 m/s、9 m/s 及 8 m/s 其所需之成本分別約為 4552 元/ha-day、 3895 元/ha-day、3442 元/ha-day、 2997元/ha-day、 2116 元/ha-day、 1677 元/ha-day、 1465 元/ha-day、1252 元/ha-day。

This study was planned to investigate the aeolian sand control effect of sand moisture. The estuary of Da-an river, an area full of severe hazards of aeolian sand and fugitive dust, was chosen as the study site. A soil experiment was conducted in laboratory to determine the physical properties of the sand sample collected from the site. Besides, a wind
tunnel experiment was carried out to measure the starting threshold of wind velocity and the moisture content of the sand, as well as the restraint duration on sand movement of sand moisture. According to the soil experiment results of the physical properties of the sand, the soil texture of Da-an river was sorted as poorly graded sandy soil, the moisture content of natural dried sand was about 0.5%, the average particle size was about 0.313mm, the density of sand was 2.72 g/cm3, and the shape coefficient of sand was 0.9794.
As to the wind tunnel experiment, the results showed that when moisture content of sand was 0.13%, the starting threshold of wind velocity of the sand particles decreased with different diameters were respectively as follows: 13-14m/s for the sand with 2-0.84mm, 7-8m/s for the sand with 0.84-0.42mm, 6-7m/s for the sand with 0.42-0.25mm, 4-5m/s for the sand with 0.25-0.15mm, and less than 4m/s for the sand smaller than 0.15mm.
According to the other results, the starting threshold of moisture content for the sand particles increased with different diameters at different starting wind velocities were respectively as follows: 0.475% for the sand with 2-0.84mm at a speed of 14m/s, 0.730% for the sand with 0.84-0.42mm at a speed of 8m/s, 2.045% for the sand with 0.42-0.25mm at a speed of 7m/s,2.115% for the sand with 0.25-0.15mm at a speed of 5m/s, and 2.255% for the sand smaller than 0.15mm at a speed of 4m/s In addition, the sand field capacity of Da-an river sample was about 2.98%. The field capacity was used as a standard moisture value to spray the sand to control sand movement. The aeolin sand control effect and
restraint duration of sand movement decreased as the wind velocity increased. The aeolian sand amount started to increase significantly when the blown duration was 180-190 minute at a wind velocit of 10m/s. The timing to re-spray sand to restore the sand moisture was based on the duration. Study estimated the costs to restore the sand moisture to field
capacity at a soil depth of 3 cm with different wind velocity were respectively as follow: NT 4552 dollar/ha-day at a speed of 15 m/s, NT 3895 dollar/ha-day at a speed of 14 m/s, NT 3442 dollar/ha-day at a speed of 13 m/s, NT 2997 dollar/ha-day at a speed of 12 m/s, NT 2116
dollar/ha-day at a speed of 11 m/s, NT 1677 dollar/ha-day at a speed of 10 m/s, NT 1465 dollar/ha-day at a speed of 9 m/s, NT 1252 dollar/ha-day at a speed of 8 m/s.
URI: http://hdl.handle.net/11455/89447
其他識別: U0005-0307201510552100
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-16起公開。
Appears in Collections:水土保持學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101042007-1.pdf2.92 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.