Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89449
標題: Shipborne gravity estimation from the combination of inertial measurement unit(IMU) and global positioning system (GPS)
結合慣性測量元件(IMU)與全球定位系統(GPS)估算船載重力值
作者: 王偉龍
Wei-Lung Wang
關鍵字: 慣性測量元件;全球定位系統;濾波;重力;IMU;GPS;filter;gravity
引用: 高書屏(2012),GPS衛星定位測量概論,詹氏書局。 董緒榮、張守信、華仲春(1998),GPS/INS組合導航定位及其應用,國防科技大學出版社,長沙。 邱俊榮(2002),INS/GPS空載重力測量之研究—以直接求差法估計重力,國立成功大學測量及空間資訊學系碩士論文,台南市。 施?昶(2004),空載重力觀測系統,國立交通大學碩士論文,新竹。 施?昶(2010),多重高?空載重?測?應用於計算大地起伏和黑潮,國立交通大學博士論文,新竹。 陳松安(2006),船載重??據?波處?成果之初步分析,2006 資訊管?國際研討會 張嘉強(2006),近岸船載重?測?、船測資?分析及資?庫建置工作案工作總報告,內政部,台北市。 黃金維(2011),100年度臺灣本島近岸船載重力測量作業期末報告,內政部國土測繪中心。 黃金維(2012),101年度臺灣本島近岸船載重?測?作業期初報告,內政部國土測繪中心。 翟邦和(2012),以GPS決定船姿態角改善船載海面高,國立交通大學土木工程學系碩士論文,新竹市。 陳翠屏(2013),重力場模型對慣性導航技術之影響,國立成功大學測量及空間資訊學系碩士論文,台南市。 Dehghani, G. A.,(2001),'Marine Gravimetry: A Review', EGS XXVI General Assembly, Nice, France. El-Rabbany, A. (2002), GPS: The Global Positioning System, Artech House, Canada. Farrell , J., and M., Barth(1999),The Global Positioning System and Inertial Navigation。 Glennie , C., K. P. Schwarz,(1999),A comparison and analysis of airborne gravimetry results from two strapdown inertial/DGPS systems,J. Geodesy,Vol 73,311-321。 Harlan, R. (1968),E?tv?s corrections for airborne gravimetry, Journal of Geophysical Research, 73, pp. 4675-4679. Hsu, S.K., C.S.Liu, C.T. Shyu, S.Y. Liu, J.C. Sibuet, S. Lallemand, C. Wang,and D. Reed (1998),New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation, Terrestrial, Atmospheric and Oceanic Sciences, 9, pp.509-532. Jekeli, C. (1997),GPS phase accelerations for moving-base vector gravimetry, Journal of Geodesy, 71, pp. 630-639. Jekeli, C. (1997),GPS phase accelerations for moving-base vector gravimetry, Journal of Geodesy, 71, pp. 630-639. Jekeli, C. (2001),Inertial Navigation Systems with Geodetic Applications, Walter de Gruyter, Berlin, New York. Jekeli, C. (2001),Inertial Navigation Systems with Geodetic Application, de Gruyter, New York. Kwon, J.H. and C. Jekeli (2001),A new approach for airborne vector gravimetry using GPS/INS,Journal of Geodesy, 74, pp.690-700. Leick, Alfred, (1994),GPS Satellite Surveying, 2ed Edition, John Wiley & Son Inc. USA. Pavlis, N. K., S. A. Holmes, S. C. Kenyon., and J. K. Factor. (2008),An earth gravitational model to degree 2160: EGM08. Presentation given at the 2008 European Geosciences Union General Assembly, Vienna, Austria, April 13-18. Schwarz, K.P. and Y.C. Li (1996),What can airborne gravimetry contribute to geoid determination?, Journal of Geophysical Research, 101, pp. 17873-17881. Schwarz, K.P. and Z. Li (1997),Introduction to airborne gravimetry and its boundary value problems, in 'Geodestic Bounday Value Problems in view of the one Centimeter Geoid, F Sanso and R Rummel (eds), Lecture Notes in EarthSciences, 65, Springer,Berlin. Torge, W. (1989),Gravimetry, de Guryter, Berlin. Torge , W.(1991),Geodesy 2nd Edition,de Gruyter,New York,1991。 Wei , M. and K. P. Schwarz(1998),Flight test results from a strapdown airborne gravity system,J. Geodesy,Vol 72,323-332。 Wei, M (1998),Flight test results from a strapdown airborne gravity system,J Geodesy, Vol 72, pp. 323-332. Wessel, P., and W. H. F. Smith (2009),The Generic Mapping Tools (GMT) version4.5.1, Technical Reference and Cookbook, Univ. of Hawaii, Hawaii, USA. Xiaopeng Li(2011),Strapdown INS/DGPS airborne gravimetry tests in the Gulf of Mexico,J. Geodesy (2011) 85:597–605 DOI 10.1007/s00190-011-0462-2 http://www.forsbergservices.co.uk/uimu-lci-0
摘要: 
本研究利用船載慣性測量元件(Inertial Measurement Unit, IMU)及全球定位系統(Global Positioning System, GPS)資料進行估算重力值,並進行嚴密的精度分析。IMU與GPS資料來源為國土測繪中心於2011年辦理的「臺灣本島近岸船載重力測量」計畫。資料前處理過程中,考慮各種濾波方式與不同的罩窗寬度組合,以濾波後IMU與GPS的相關係數與差值標準偏差,來決定最佳的濾波方式。計算重力時,再以高斯濾波消除雜訊,以期獲得最佳之重力值。最終重力結果與ZLS船載重力儀和EGM08比較並分析其精度。
研究結果顯示(1)高斯濾波與餘弦濾波對消除雜訊有較佳的結果。(2)航線0514c的IMU與 GPS初始資料,分別在高斯濾波罩窗寬度5.5秒與2秒時,有最高相關係數值0.88。 (3) 航線0519a的IMU與 GPS初始資料,分別在高斯濾波罩窗寬度5.0秒與1秒時,也有最高相關係數值0.88。(4)本研究重力值最佳精度在航線2-2,在使用濾波罩窗寬度200 ? 500秒的精度約為40 ? 50 mgal,而在使用濾波罩窗寬度1000? 1500秒則可達到約20 ? 30 mgal。

The study is aimed at gravity estimation by using Inertial Measurement Unit(IMU) and Global Positioning System(GPS) data, and the accuracies of results are rigorously analyzed. The IMU and GPS data are from the proposal 「Shipborne gravity survey over the inshore areas of Taiwan」 sponsored by National Land Surveying and Mapping Center (NLSC) in 2011. In the step of data pre-processing, we consider different filter techniques and widths to determine a best filter combination according to the correlation coefficients and standard deviations between GPS and IMU data. Gaussian filter is adopted again to eliminate data noises in the step of gravity computation. The results are evaluated both by ZLS ship-derived and by EGM08-derived gravity.
We conclude that (1) Gaussian and Cosine arch filters both exhibit more excellent results than others. (2) In Route 0514c, the best correlation coefficient 0.88 are occurred when the Gaussian filter widths use 5.5 s for IMU, and 2 s for GPS. (3) In Route 0519a, the best correlation coefficient 0.88 are occurred when the Gaussian filter widths use 5.0 and 1 s for IMU and GPS, respectively. (4) Route 2-2 show the best result that the accuracies reach 40 ? 50 mgal at Gaussian filter widths 200 ? 500s, and reach 20 ? 30 mgal at 1000 ? 1500 s.
URI: http://hdl.handle.net/11455/89449
其他識別: U0005-2811201416184646
Rights: 同意授權瀏覽/列印電子全文服務,2016-08-31起公開。
Appears in Collections:水土保持學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101042010-1.pdf5.49 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.