Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89461
標題: A Study of Characteristics for Wildfire Potential Sites Using Drought Indices
以乾旱指標探討火燒潛勢區位特性之研究
作者: 謝巧柔
Chiao-Jou Hsieh
關鍵字: 火燒;常態化差異植生指標(NDVI);常態化差異水體指標(NDWI);常態化多波段乾旱指標(NMDI);地形校正;Wildfire;Normalized Difference Vegetation Index;Normalized Difference Water Index;Normalized Multi-band Drought Index;Topographic correction
引用: 中文文獻: 1. 內政部國土測繪中心,「遙感探測簡介」,http://www.nlsc.gov.tw。 2. 元培堯(2012),「利用MODIS與AMSR-E衛星資料推估地表土壤含水量」,國立中央大學土木工程學系碩士論文。 3. 王偉、邱清安、蔡尚?、許俊凱、曾喜育、呂金誠(2010),「雪山主峰沿線植物社會調查研究」,林業研究季刊,32(3):15~34。 4. 王慈憶、陳建璋、陳朝圳(2006年)「以SPOT衛星影像探討淡水河紅樹林自然保留區植生指標之變化」,作物、環境與生物資訊,3: 229~238。 5. 田應平(2010),「山區森林影像地形校正:MVECA法的嘗試」,國立臺灣師範大學地理研究所碩士論文。 6. 行政院農委會林務局,「無痕山林運動」,臺灣山林悠遊網:http://recreation.forest.gov.tw/LNT/LNT_1_1.aspx。 7. 呂明倫、鍾玉龍(2007),「以SPOT衛星影像植生指標推估南仁山次生林之林分結構特徵」,台灣林業科學,22(2):183-92。 8. 吳景揚(2003),「林火與氣象指標因子之研究─以南投林區為例」,國立中興大學森林學系碩士論文。 9. 林朝欽(1993),「玉山、太魯閣及雪霸地區國有林森林火災之研究(1963-1991年)」,中華林學季刊,26(2):51-61。 10. 長興茶行(2013),「茶葉採收季節」,長興茶行網站:http://www. sumusen.com.tw/article.php?id=412。 11. 康若蘭、林登秋、詹進發、黃正良(2000),「2000年碧利斯颱風干擾前後福山試驗林NDVI變動之研究」,台灣林業科學,20(1):73~87。 12. 張軒哲、蔡宗勳、余雪蘭、張文川(2008),「生狼煙求援 燒毀4公頃森林」,自由時報新聞網,http://news.ltn.com.tw/news/life/paper/ 267022/print。 13. 張瑞楨(2014),「登山客燒垃圾 險毀三六九山莊」,自由時報新聞網,http://m.ltn.com.tw/news/society/paper/748572。 14. 張鑫崴(2013),「因應氣候變遷合坑溪集水區調適策略之研究」,國立中興大學水土保持學系碩士論文。 15. 國軍退除役官兵輔導委員會武陵農場(2011),「武陵農場為民服務白皮書」,國軍退除役官兵輔導委員會武陵農場網站:http://www2. wuling-farm.com.tw/profile/ins.php?index_id=100。 16. 陳正祥(1957),「氣候之分類與分區」,國立臺灣大學農學院實驗林印行,頁91。 17. 陳明義、施纓煜(1997),「野火影響環山與雪山地區植群之研究(Ⅰ)」,內政部營建署雪霸國家公園管理處八十六年度研究報告。 18. 雪霸國家公園遊憩服務課(2014),「雪東線路線介紹」,雪霸國家公園網站,https://www.spnp.gov.tw/default.aspx?lang=1。 19. 楊美和、高穎儀、孫文舉(1997),「森林火災與濕潤係數關係之研究」,吉林林學院學報13(1):10~13。 20. 曾彥學、曾喜育(2014)「雪山高山生態系生態健康指標調查」,內政部營建署雪霸國家公園委託辦理報告。 21. 曾彥學、鄭婷文、王秋美、劉思謙( 2010),「第四章 維管束植物調查及植相研究」,雪山地區高山生態系整合研究,雪霸國家公園委託報告: 216~268。 22. 黃曼瑩(2001),「雪山大火/東峰森林延燒10公頃 火勢可望控制」,NOWnews今日新聞網:http://www.nownews.com/2001/02/19/738- 370131.htm。 23. 廖祿偉、鍾玉龍(2007)「南仁山次生林永久樣區常態化差異植生指標季節性變化之研究」,華岡農科學報,20:93~103。 24. 潘國樑(2009),「遙測學大綱(第二版)」,科技圖書股份有限公司,頁3~8。 25. 謝禮丞(2004),「衛星影像在天然災害損失評估與應用之研究─以森林火災為例」,內政部消防署委託研究報告。 26. 顏添明、吳景揚(2004),「南投林區林火影響因子之探討」,林業研究季刊,26(1):47~60。 27. 魏聰輝、林博雄 (2010),「高山微氣象與熱量收支之研究」,雪霸國家公園管理處委託研究報告,頁1-7。 28. 魏聰輝、林博雄 (2012),「雪山高山微氣象與水量與熱量時空分布特性」,內政部營建署雪霸國家公園管理處委託研究報告,頁1-27~1-30。   英文文獻: 1. Chander, G. and Markham, B. (2003), 'Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges', IEEE Transactions on Geoscience and Remote Sensing, Vol. 41(11): 2674–2677. 2. Chander, G., Markhamb, B. L., Helderc, D. L. (2009), 'Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+,and EO-1 ALI sensors', Remote Sensing of Environment, 113: 893–903. 3. Fielding, A. H. (1999). 'How should accuracy be measured?' In: A.H. Fielding, Ed, Machine Learning Methods for Ecological Applications, Kluwer Academic Publishers, Dordrecht: 209–223. 4. Gao, B. C. (1996), 'NDWI─A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space', Remote Sens. Environ, 58: 257--266. 5. Gao, B. C., and Goetz, A. F. H. (1994), Extraction of dry leaf spectral features from reflectance spectra of green vegetation. Remote Sens. Environ. 47:369–374. 6. Gisborne, H.T. (2004), 'Fundamentals of fire behavior.', Fire Management Today, 64(1): 15–23. 7. Goetz, A. F. H., Rock, B. N. and Rowan, L. C. (1983), 'Remote sensing for exploration and an overview', Economic Geology, 79: 573–590. 8. Gu, D., Gillespie, A. (1998), 'Topographic normalization of Landsat TM images of forest based on subpixel sun-canopy-sensor geometry', Remote Sensing of Environment, 64: 166–175. 9. Key, C. H., and Nathan C. B. (2006). 'Landscape Assessment (LA).' Sampling and Analysis Methods (CD-ROM), USDA Forest Service Gen., Tech., Rep., RMRS-GTR-164-CD. 10. Meyer, P., Itten, K. I., Kellenberger, T., Sandmeier, S., and Sandmeier, R. (1993) 'Radiometric Corrections of Topographically Induced Effects on Landsat TM Data in An Alpine Environment', Journal of Photogrammetry and Remote Sensing, 48(4): 17–28. 11. NASA Landsat (2015), website: http://landsat.gsfc.nasa.gov/?pag e_id=2281. 12. Rouse, J. W. Jr., Haas, R. H., Schell, J. A. and Deering, D. W. (1973), 'Monitoring vegetation systems in the great plains with ERTS,' In: NASA SP-351, 3rd ERTS-1 Symposium, Washington, DC: 309–317. 13. Tucker, C. J., Justice, C. O., and Pince, S. D. (1986), Monitoring the grasslands of the Sahel 1984-1985, Int. J. Remote Sens. 7: 1571–1581. 14. USGS Landsat (2015), website: http://landsat.usgs.gov/. 15. Vincini, M., Reeder, D. and Frazzi, E. (2002), 'An Empirical Topographic Normalization Method for Forest TM Data,' IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2586–2590. 16. Wang, L. and Qu, J. J. (2007), 'NMDI: A Normalized Multi-band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing,' Geophysical Research Letters, Vol. 34, L20405: 1–5. 17. Wang, L., Qu, J. J. and Hao, X. (2008), 'Forest Fire Detection Using the Normalized Multi-band Drought Index (NMDI) with Satellite Measurements, ' Agricultural and Forest Meteorology, 148: 1767–1776. 18. Weier, J. and Herring, D. (2000), 'Measuring Vegetation (NDVE & EVI),' NASA Earth Observatory, website: http://earthobservatory nasa.gov/Features/MeasuringVegetation/.
摘要: 
近年國人登山遊憩活動盛行,然在「無痕山林」觀念未普及下,人為擾動替生態環境帶來不同程度之影響。雪霸國家公園於1969年在億年橋集水區開闢雪東線登山步道,因沿線硬體設備與路線規劃完善,且為冬季前往雪山主峰賞雪之路徑,大幅提高人為可及性,經國家公園研究報告統計,自步道開闢以來已發生多起火燒事件,引火因子多人為遊憩,已造成林相與生物棲地之改變,並因火燒跡地之植群更替,提高了再次發生火燒之風險。如何利用衛星影像於該樣區劃定火燒潛勢區位,以有效進行防火、減火策略與措施,以降低火燒造成之生態損害及地貌改變極為重要。
本研究首先以輻射值修正以正確提取陸地衛星(Landsat)影像資訊,並為降低樣區地形效應影響,利用b-correction法進行地形校正,接著藉由多期衛星影像萃取常態化差異植生指標(Normalized Difference Vegetation Index, NDVI)、常態化差異水體指標(Normalized Difference Water Index, NDWI)與常態化多波段乾旱指標(Normalized Multi-band Drought Index, NMDI)進行季節性之空間分析探討,另利用NDVI以k-mean分析,將變異高與低之地覆類別進行樣本採集,繪製12期NDVI曲線圖,經由每個月份之變異分析,並搭配國土利用資源調查圖資,可獲取各樣本之地真資訊。接著利用NDVI劃分植生與裸地像元,以萃取NMDI植生像元(NMDIveg)小於0.4之區塊為火燒潛勢區位,並與同季NDWI以影像展示與曲線、散布圖進行差異比較,結果顯示利用NMDI萃取火燒潛勢區位較為準確,最後將火燒潛勢之影像與利用常態化火燒指標(Normalized Burn Ratio, NBR)所劃定之火燒跡地影像套疊並進行精確度評估,結果顯示利用NMDI劃定火燒潛勢區位之方法整體正確率達89.9%。

By the lack of advocacy of 'Leave No Trace' concept, human disturbance continuously causes the different levels of stress to the natural environment. Since 1969, the East trail of Mt. Xue inaugurated in the Shei-Pa National Park has attracted many mountaineers due to the integrated recreation facilities, and served as the main path to the Mt. Xue in the snow season, provided the approachability of human activities. However, previous researches show that several wildfire events had occurred along the trail, affected the forest stands and caused the territory expansion of the fire adapted species which would possibly increase the opportunity of wildfire occurrence. Most of the wildfire events were ignited by the inappropriate human activities such as picnic, smoking, camping and garbage burning. How to use environment indices delineating the spatial and temporal distributions of the potential wildfire to provide the precise locations and proper time for the purposes of fire prevention and strategies making is crucial.
Normalized Difference Vegetation Index (NDVI), Normalized Difference water Index and Normalized Multi-band Drought Index (NMDI) derived from radiometric and topographic corrected multi-phase satellite imageries were applied in this study. A map of twelve-phase NDVI variation curves plotted using different land-cover classifications after k-mean analysis, and the analysis of monthly variation from the map coupled with the coverages of national resources inventory to acquire the ground truth information for each land-cover classification were the process of NDVI application in the research.
The value of NMDIveg <0.4 could be as a threshold to delineate the spatial distribution of wildfire potential site, which can then be employed to compare with the same seasonal scatter maps of NDWI. Results showed that there will be more accuracy for the delineation of wildfire potential extracted from NMDI. Comparing the wildfire potential sites with the burned locations, which derived from Normalized Burn Ratio, the correct classification rate of 89.9% can be expected in this study.
URI: http://hdl.handle.net/11455/89461
其他識別: U0005-2508201515092300
Rights: 同意授權瀏覽/列印電子全文服務,2016-08-27起公開。
Appears in Collections:水土保持學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102042031-1.pdf4.79 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.