Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89477
標題: Cloning of Cucumis metuliferus Cm4 gene and its effects on transgenic Nicotiana benthamiana
刺角瓜Cm4基因之選殖與其菸草表現轉殖株之建立與分析
作者: 王彥筑
Yen-Chu Wang
關鍵字: Cucumis metuliferus;PRSV;Cm4;CRK;resistance;刺角瓜;木瓜輪點病毒;Cm4;鈣依賴相似蛋白激酶;抗病性
引用: 林育宗。2012。刺角瓜抗木瓜輪點病基因之選殖與功能分析。國立中興大學農藝 學系博士論文。台中。 柳建安。2004。植物基因轉殖與分子檢測技術。教育部顧問室植物生物技術教學 資源中心。台中。 Abbasi, F., H. Onodera, S. Toki, H. Tanaka and S. Komatsu. 2004. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol. Bio. 55: 541-552. Baebler, S., K. Witek, M. Petek, K. Stare, M. Tusek-Znidaric, M. Pompe-Novak, et al. 2014. Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato. J. Exp. Bot. 65: 1095-1109. Baures, I., T. Candresse, A. Leveau, A. Bendahmane and B. Sturbois. 2008. The Rx gene confers resistance to a range of potexviruses in transgenic Nicotiana plants. Mol. Plant Microbe. Interact. 21: 1154-1164. Bendahmane, A., K. Kanyuka and D.C. Baulcombe. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11: 781-792. Bent, A.F. 1996. Plant disease resistance genes: function meets structure. Plant Cell 8: 1757-1771. Cheng, S.F., M.S. Tsai, C.L. Huang, Y.P. Huang, I.H. Chen, N.S. Lin, Y. H. Hsu, C. H. Tsai and C. P. Cheng. 2013. Ser/Thr kinase-like protein of Nicotiana Benthamiana is involved in the cell-to-cell movement of bamboo mosaic virus. Plos One 8: e62907 Cheng, S.H., M.R. Willmann, H.C. Chen and J. Sheen. 2002. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129: 469-485. Chico, J.M., M. Raices, M.T. Tellez-Inon and R.M. Ulloa. 2002. A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol. 128: 256-270. Chung, E., J.M. Park, S.K. Oh, Y.H. Joung, S. Lee and D. Choi. 2004. Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta 220: 286-295. Coca, M. and B. San Segundo. 2010. AtCPK1 calcium-dendent protein kinase mediates pathogen resistance in Arabidopsis. Plant J. 63: 526-540. Das, R. and G.K. Pandey. 2010. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr. Genomics 11: 2-13. Dinesh-Kumar, S.P., W.H. Tham and B.J. Baker. 2000. Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc. Natl. Acad. Sci. USA 97: 14789-14794. Du, W., Y. Wang, S.P. Liang and Y.T. Lu. 2005. Biochemical and expression analysis of an Arabidopsis calcium-dependent protein kinase-related kinase. Plant Sci. 168: 1181-1192. Feng, B., Y. Chen, C. Zhao, X. Zhao, X. Bai and Y. Du. 2006. Isolation of a novel Ser/Thr protein kinase gene from oligochitosan-induced tobacco and its role in resistance against tobacco mosaic virus. Plant Physiol. Biochem. 44: 596-603. Ferreira, S.A., K.Y. Pitz, R. Manshardt, F. Zee, M. Fitch and D. Gonsalves. 2002. Virus coat protein Transgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Disease 86: 101-105. Fu, L., X. Yu and C. An. 2013. Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea. Plant Physiol. Biochem. 73: 202-210. Fu, Z.Q. and X. Dong. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64: 839-863. Fulton, T. M., J. Chunwongse, and S. D. Tanksley. 1995. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. Furumoto, T., N. Ogawa, S. Hata and K. Izui. 1996. Plant calcium-dependent protein kinase-related kinases (CRKs) do not require calcium for their activities. FEBS Lett. 396: 147-151. Garcia-Brugger, A., O. Lamotte, E. Vandelle, S. Bourque, D. Lecourieux, B. Poinssot, et al. 2006. Early signaling events induced by elicitors of plant defenses. Mol. Plant Microbe. Interact. 19: 711-724. Grant, M., I. Brown, S. Adams, M. Knight, A. Ainslie and J. Mansfield. 2000. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 23: 441-450. Harmon, A.C. 2003. Calcium-regulated protein kinases of plants. Gravit. Space Biol. Bull. 16: 83-90. Horsch, R.B., J.E. Fry, N.L. Hoffmann, D. Eichholtz, S.G. Rogers and R.T. Fraley. 1985. A simple and general method for transferring genes into plants. Science 227: 1229-1231. Hrabak, E.M., C.W. Chan, M. Gribskov, J.F. Harper, J.H. Choi, N. Halford, et al. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant physiol. 132: 666-680. Johnson, J.M., M. Reichelt, J. Vadassery, J. Gershenzon and R. Oelmuller. 2014. An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress. BMC Plant Biol. 14: 162-170. Klimecka, M. and G. Muszynska. 2007. Structure and functions of plant calcium-dependent protein kinases. Acta. Biochim. Pol. 54: 219-233. Kudla, J., O. Batistic and K. Hashimoto. 2010. Calcium signals: the lead currency of plant information processing. Plant Cell 22: 541-563. Lakatos, L., G. Hutvagner and Z. Banfalvi. 1998. Potato protein kinase StCPK1: a putative evolutionary link between CDPKs and CRKs. Biochim. Biophys. Acta. 1442: 101-108. Leclercq, J., B. Ranty, M.T. Sanchez-Ballesta, Z. Li, B. Jones, A. Jauneau, J. C. Pech, a. Latche, R. Ranjeva and M. Bouzayen. 2005. Molecular and biochemical characterization of LeCRK1, a ripening-associated tomato CDPK-related kinase. J. Exp. Bot. 56: 25-35. Lecourieux, D., R. Ranjeva and A. Pugin. 2006. Calcium in plant defence-signalling pathways. New Phytol. 171: 249-269. Levy, M., O. Edelbaum and I. Sela. 2004. Tobacco mosaic virus regulates the expression of its own resistance gene N. Plant Physiol. 135: 2392-2397. Li, R.J., W. Hua and Y.T. Lu. 2006. Arabidopsis cytosolic glutamine synthetase AtGLN1;1 is a potential substrate of AtCRK3 involved in leaf senescence. Biochem. Biophys. Res. Commun. 342: 119-126. Lin, Y.T., C.W. Lin, C.H. Chung, M.H. Su, H.Y. Ho, S.D. Yeh, et al. 2011. In vitro regeneration and genetic transformation of Cucumis metuliferus through cotyledon organogenesis. Hort Sci. 46: 616-621. Lindzen, E. and J.H. Choi. 1995. A carrot cDNA encoding an atypical protein kinase homologous to plant calcium-dependent protein kinases. Plant Mol. Bio. 28: 785-797. Liu, P.P., S. Bhattacharjee, D.F. Klessig and P. Moffett. 2010. Systemic acquired resistance is induced by R gene-mediated responses independent of cell death. Mol. Plant Pathol. 11: 155-160. Loebenstein, G. 2009. Local lesions and induced resistance. Adv. Virus Res. 75: 73-117. Ma, F., R. Lu, H. Liu, B. Shi, J. Zhang, M. Tan, A. Zhang and M. Jiang. 2012. Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J. Exp. Bot. 63: 4835-4847. Mithofer, A., E. Jurgen, A.A. Bhagwat, T. Boller and G. Neuhaus-Url. 1999. Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with β-glucan or chitin elicitors. Planta 207: 566-574. Murillo, I., E. Jaeck, M.J. Cordero and B. San Segundo. 2001. Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol. Bio. 45: 145-158. Napoli, C., C. Lemieux, and R. Jorgensen. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279-289. Pajerowska-Mukhtar, K.M., W. Wang, Y. Tada, N. Oka, C.L. Tucker, J.P. Fonseca, and X, Dong. 2012. The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Curr. Biol. 22: 103-112. Pandey, S., S.B. Tiwari, W. Tyagi, M.K. Reddy, K.C. Upadhyaya and S.K. Sopory. 2002. A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur. J. Biochem. 269: 3193-3204. Patil, S., D. Takezawa and B.W. Poovaiah. 1995. Chimeric plant calcium/calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain. Proc. Natl. Acad. Sci. USA 92: 4897-4901. Pieterse, C.M. and L.C. van Loon. 1999. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4: 52-58. Provvidenti, R. and D. Gonsalves. 1982. Resistance to papaya ringspot virus in Cucumis metuliferus and its relationship to resistance to watermelon mosaic virus 1. J. Hered. 73: 239-240. Reddy, A.S. 2001. Calcium: silver bullet in signaling. Plant Sci. 160: 381-404. Reddy, A.S., G.S. Ali, H. Celesnik and I.S. Day. 2011. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23: 2010-2032. Rigo, G., F. Ayaydin, O. Tietz, L. Zsigmond, H. Kovacs, A. Pay, K. Salchert, Z. Darula, K. F. Medzihradszky, L. Szabados, K. Palme, C. Koncz and A. Cseplo. 2013. Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25: 1592-1608. Romeis, T., A.A. Ludwig, R. Martin and J.D. Jones. 2001. Calcium‐dependent protein kinases play an essential role in a plant defence response. EMBO J. 20: 5556-5567. Ross, A.F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340-358. Saijo, Y., S. Hata, J. Kyozuka, K. Shimamoto and K. Izui. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23: 319-327. Schilmiller, A.L. and G.A. Howe. 2005. Systemic signaling in the wound response. Curr. Opin. Plant Biol. 8: 369-377. Siebert, P.D., A. Chenchik, D.E. Kellogg, K.A. Lukyanov and S.A. Lukyanov. 1995. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids. Res. 23: 1087-1088. Song, J.T., H. Lu, J.M. McDowell and J.T. Greenberg. 2004. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J. 40: 200-212. Spoel, S.H. and X. Dong. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rew. Immunol. 12: 89-100. Tai, S.S., G.S. Liu, Y.H. Sun and J. Chen. 2009. Cloning and expression of calcium-dependent protein kinase (CDPK) gene family in common tobacco (Nicotiana tabacum). Agricul. Sci. China 8: 1448-1457. Tao, X.C. and Y.T. Lu. 2013. Loss of AtCRK1 gene function in Arabidopsis thaliana decreases tolerance to salt. J. Plant Bio. 56: 306-314. Titarenko, E., E. Rojo, J. Leon and J.J. Sanchez-Serrano. 1997. Jasmonic acid-dependent and -independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol. 115: 817-826. Wan, B., Y. Lin and T. Mou. 2007. Expression of rice Ca(2+)-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS letters. 581: 1179-1189. Wang, Y., S. Liang, Q.G. Xie and Y.T. Lu. 2004. Characterization of a calmodulin-regulated Ca2+-dependent-protein-kinase-related protein kinase, AtCRK1, from Arabidopsis. Biochem. J 383: 73-81. Watillon, B., R. Kettmann, P. Boxus and A. Burny. 1993. A calcium calmodulin-binding serine threonine protein kinase homologous to the mammalian type II calcium calmodulin-dependent protein-kinase is expressed in plant cells. Plant Physiol. 101: 1381-1384. Whitham, S., S.P. Dinesh-Kumar, D. Choi, R. Hehl, C. Corr and B. Baker. 1994. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101-1115. Xiang, Y., Y. Huang and L. Xiong. 2007. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 144: 1416-1428. Xie, C., X. Zhou, X. Deng and Y. Guo. 2010. PKS5, a SNF1-related kinase, interacts with and phosphorylates NPR1, and modulates expression of WRKY38 and WRKY62. J. Genet. Genomics. 37: 359-369. Xu, J., Y.S. Tian, R.H. Peng, A.S. Xiong, B. Zhu, X.F. Jin, F. Gao, X.Y. Fu, X.L. Hou and Q.H. Yao. 2010. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231: 1251-1260. Yoon, G.M., H.S. Cho, H.J. Ha, J.R. Liu and H.S. Lee. 1999. Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol. Bio. 39: 991-1001. Yu, I.C., J. Parker and A.F. Bent. 1998. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl. Acad. Sci. USA 95: 7819-7824. Zhang, X.D. and Z.L. Mou. 2012. Expression of the human NAD(P)-metabolizing ectoenzyme CD38 compromises systemic acquired resistance in Arabidopsis. Mol Plant. Microbe. Interact. 25: 1209-1218. Zhang, Z., E. Fradin, R. de Jonge, H.P. van Esse, P. Smit, C.M. Liu, and B.P. Thomma. 2013. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol. Plant Microbe. Interact. 26: 182-190. Zhao, J., Z. Sun, J. Zheng, X. Guo, Z. Dong, J. Huai, M. Gou, J. He, Y. Jin, J. Wang and G. Wang. 2009. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol. Bio. 69: 661-674.
摘要: 
刺角瓜 (Cucumis metuliferus) Cm4基因透過genome block walking和快速擴增cDNA末端法,解序出基因組和cDNA全長以及Cm4基因之啟動子序列。Cm4基因組全長共5054 bp,cDNA全長共1722 bp,可編碼573個胺基酸並轉譯出帶有絲/蘇氨酸蛋白激酶domain的鈣依賴相似蛋白激酶 (Ca2+-dependent protein kinase-related kinase)。刺角瓜中只帶有一套Cm4基因,而作為轉殖材料的菸草 (Nicotiana benthamiana) 及番茄 (Solanum lycopersicum) 中沒有和Cm4序列相似的基因。當刺角瓜感染木瓜輪點病毒 (Papaya ringspot virus, PRSV) 以及機械傷害時,Cm4基因會在系統葉誘導表現,推測Cm4基因和刺角瓜的系統防禦相關。為了解Cm4基因在異源植物表現是否會影響到植物的抗病性,構築Cm4基因組表現以及cDNA過表現載體之後進行菸草和番茄轉殖,並以聚合酶連鎖反應檢測轉殖株。從菸草轉殖Cm4基因組表現的子代發現有子葉較大的情形,但觀察四週大轉殖株則與野生型的型態則沒有差異。檢測菸草轉殖株的抗病性,將不同轉殖品系各15株,分別接種馬鈴薯Y病毒 (Potato virus Y, PVY)、番椒葉脈斑駁病毒 (Pepper veinal mottle virus, PVMV)、辣椒葉脈斑駁病毒 (Chilli veinal mottle virus, ChiVMV)、蕪菁嵌紋病毒 (Turnip mosaic virus, TuMV),發現所有表現Cm4基因之轉殖株皆感病。Cm4基因表現不能使菸草具有抗病性,但接種病毒會誘導Cm4基因表現,Cm4基因可能參與系統防禦訊號的傳遞,然而Cm4基因是否會影響刺角瓜的抗病性,則須在日後檢測Cm4靜默之刺角瓜轉殖株才可得知。

A partial cDNA-AFLP fragment of Cm4 was initially identified in Cucumis metuliferus. Subsequently, the full length of Cm4 genomic and cDNA fragments were cloned using genome block walking and rapid amplification of cDNA end (RACE). The C. metuliferus genomic and cDNA fragments of Cm4 gene contain 5054 and 1722 bp in which translated 573 amino acids and coded for Ca2+-dependent protein kinase-related kinase (CRK) containing serine/threonine protein kinase domain. Southern blot showed that C. metuliferus had one copy of Cm4 but there was no homolog existing in Nicotiana benthamiana and Solanum lycopersicum. The expression of Cm4 was induced by Papaya ringspot virus (PRSV) inoculation and machine infection on systemic leaves indicating its role in systemic defense response to wounding and pathogen infections. To investigate the effect of Cm4 with regard to virus resistance, the full length of Cm4 genomic and cDNA fragments were constructed in expression vectors and genetic-engineered into N. benthamiana and S. lycopersicum by Agrobacterium-mediated transformation. Transgenic plants harboring Cm4 gene were obtained. Some tobacco transgenic plants expressing Cm4 genomic fragment showed enlarged cotyledons but no difference was observed in 4-weeks-old of these plants. All the transgenic tobacco showed susceptible symptom after inoculated with Potato virus Y (PVY), Pepper veinal mottle virus (PVMV), Chilli veinal mottle virus (ChiVMV) and Turnip mosaic virus (TuMV). This study suggested that C. metuliferus Cm4 genomic and cDNA fragments might not participate in potyvirus resistance in tobacco. However, its resistant role against PRSV in C. metuliferus need to be verify only when C. metuliferus transgenic plants obtained in the future.
URI: http://hdl.handle.net/11455/89477
其他識別: U0005-0202201519230800
Rights: 同意授權瀏覽/列印電子全文服務,2018-02-03起公開。
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101031109-1.pdf2.99 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.