Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89478
標題: Molecular cloning and analysis of papaya ringspot virus resistance candidate genes Cm8 and Cm23 in Cucumis metuliferus
刺角瓜抗木瓜輪點病毒候選基因Cm8及Cm23選殖與分析
作者: 陳思勻
Szu-Yun Chen
關鍵字: Cucumis metuliferus;papaya ringspot virus (PRSV);Nicotiana benthamiana;Solanum lycopersium;heat shock protein 40;casein kinase I;刺角瓜;木瓜輪點病毒;圓葉菸草;番茄;heat shock protein 40;casein kinase I
引用: 林育宗。2012。刺角瓜抗木瓜輪點病基因之選殖與功能分析。國立中興大學農藝學系博士論文。台中。 詹富智、王曉俐。2004。植物基因轉殖與分子檢測技術。教育部顧問室植物生物技術教學資源中心出版。台中。308 pp 蘇湄秀。2009。建立刺角瓜之農桿菌轉殖系統。國立中興大學農藝學系碩士論文。台中。 Adelberg, J. 1998. Regeneration and frequency of tetraploid variants of cucumis metuliferus are affected by explant induction on semi-solid medium versus the liquid membrane system. Plant Cell Rep. 17: 225-229. Akamatsu, N., A. Takeda, M. Kishimoto, M. Kaido, T. Okuno and K. Mise. 2007. Phosphorylation and interaction of the movement and coat proteins of brome mosaic virus in infected barley protoplasts. Arch. Virol. 152: 2087-2093. Akasaka-Kennedy, Y., K.O. Tomita and H. Ezura. 2004. Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (cucumis melo L.). Plant Sci. 166: 763-769. Behrend, L., M. Stoter, M. Kurth, M. Rutter, G. Rutter, J. Heukeshoven, W. Deppert and U. Knippschild. 2000. Interaction of casein kinase 1 delta (CK1δ) with post-golgi structures, microtubules and the spindle apparatus. Eur. J. Cell Biol. 79: 240-251. Ben-Nissan, G., W. Cui, D.J. Kim, Y. Yang, B.C. Yoo and J.Y. Lee. 2008. Arabidopsis casein kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules. Plant Physiol. 148: 1897-1907. Benzioni, A., S. Mendlinger, M. Ventura and S. Huyskens. 1993. Germination, fruit development, yield, and postharvest characteristics of Cucumis metuliferus. In: Janick J, Simon JE (eds), New crops. Wiley, New York: 553-557. Bezirganoglu, I., S.Y. Hwang, J.F. Shaw and T.J. Fang. 2014. Efficient production of transgenic melon via Agrobacterium-mediated transformation. Genet. Mol. Res. 13: 3218-3227. Bhuiyan, N.H., G. Selvaraj, Y. Wei and J. King. 2009. Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J. Exp. Bot. 60: 509-521. Curuk, S., S. Cetiner, C. Elman, X. Xia, Y. Wang, A. Yeheskel, R. Perl-Treves, A.A. Watad and V. Gaba. 2005. Transformation of recalcitrant melon (Cucumis melo L.) cultivars is facilitated by wounding with carborundum. Eng. Life Sci. 5: 169-177. Carrington, J.C., K.D. Kasschau, S.K. Mahajan and M.C. Schaad. 1996. Cell-to-cell and long-distance transport of viruses in plants. ASPP 8: 1669-1681. Cheong, J.K. and D.M. Virshup. 2011. Casein kinase 1: complexity in the family. Int. J. Biochem. Cell Biol. 43: 465-469. Cui, Y., J. Ye, X.H. Guo, H.P. Chang, C.Y. Yuan, Y. Wang, S. Hu, X.M. Liu and X.S. Li. 2012. Arabidopsis casein kinase 1-like 2 involved in abscisic acid signal transduction pathways. J. Plant Interact. 9: 19-25. Dahal, G., H. Lecoq and S.E. Albrechtsen. 1997. Occurrence of papaya ringspot potyvirus and cucurbit viruses in nepal. Ann. Appl. Biol. 130: 491-502. Dai, C. and H.W. Xue. 2010. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J. 29: 1916-1927. Fassuliotis, G. 1977. Self-fertilization of Cucumis metuliferus Naud. and its cross-compatibility with C. melo L. J. Amer. Soc. Hort. Sci. 102: 336-339. Fulton, T.M., J. Chunzoongse and S.D. Tanksley. 1995. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. Ger, M.J., C.H. Chen, S.Y. Hwang, H.E. Huang, A.R. Podile, B.V. Dayakar and F.T. Y. 2002. Constitutive expression of hrap gene in transgenic tobacco plant enhances resistance against virulent bacterial pathogens by induction of a hypersensitive response. Mol. plant-microb. interact. 15: 764-773. Glazebrook, J. and F.M. Ausubel. 1994. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Plant Biol. 91: 8955-8959. Gonsalves, D. 1998. Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol. 36: 415-437. Govrin, E.M. and A. Levine. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen botrytis cinerea. Curr. Biol. 10: 751-757. Gross, S.D. and R.A. Anderson. 1998. Casein kinase I spatial organization and positioning of a multifunctional protein kinase family. Cell Signal. 10: 699-711. Guis, M., M.B. Amor, A. Latche, J.C. Pech and J.P. Roustan. 2000. A reliable system for the transformation of cantaloupe charentais melon (Cucumis melo L. var. cantalupensis) leading to a majority of diploid regenerants. Sci. Hortic. 84: 91-99. Huckelhoven, R. 2007. Cell wall-associated mechanisms of disease resistance and susceptibility. Annu. Rev. Phytopathol. 45: 101-127. Hematy, K., C. Cherk and S. Somerville. 2009. Host-pathogen warfare at the plant cell wall. Curr. Opin. Plant Biol. 12: 406-413. Hain, R., H.J. Reif, E. Krause, R. Langebartels, H. Kindl, B. Vornam, W. Wiese, E. Schmelzer, P.H. Schreier, R.H. Stocker and K. Stenzel. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153-156. Ham, B.K., J.M. Park, S.B. Lee, M.J. Kim, I.J. Lee, K.J. Kim, C.S. Kwon and K.H. Paek. 2006. Tobacco Tsip1, a DnaJ-type Zn finger protein, is recruited to and potentiates Tsi1-mediated transcriptional activation. The Plant cell 18: 2005-2020. Hofius, D., A.T. Maier, C. Dietrich, I. Jungkunz, F. Bornke, E. Maiss and U. Sonnewald. 2007. Capsid protein-mediated recruitment of host DnaJ-like proteins is required for potato virus Y infection in tobacco plants. J. Virol. 81: 11870-11880. Hori, K., E. Ogiso-Tanaka, K. Matsubara, U. Yamanouchi, K. Ebana and M. Yano. 2013. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J. 76: 36-46. Huh, S.U., K.J. Kim and K.H. Paek. 2012. Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon tobacco mosaic virus infection. Biochem. Biophys. Res. Commun. 417: 910-917. Ivanov, K.I. 2003. Phosphorylation of the potyvirus capsid protein by protein kinase CK2 and its relevance for virus infection. The Plant cell 15: 2124-2139. Ivanov, K.I., P. Puustinen, A. Merits, M. Saarma and K. Makinen. 2001. Phosphorylation down-regulates the rna binding function of the coat protein of potato virus A. J. Biol. Chem. 276: 13530-13540. Jackson, D. 2000. Opening up the communication channels recent insights into plasmodesmal function. Curr. Opin. Plant Biol. 3: 394-399. Jelenska, J., J.A. van Hal and J.T. Greenberg. 2010. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc. Natl. Acad. Sci. USA 107: 13177-13182. Jelenska, J., N. Yao, B.A. Vinatzer, C.M. Wright, J.L. Brodsky and J.T. Greenberg. 2007. A J domain virulence effector of pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr. Biol. 17: 499-508. Kachroo, A., Z. He, R. Patkar, Q. Zhu, J.P. Zhong, D.B. Li, P. Ronald, C. Lamb and B.B. Chattoo. 2003. Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Res. 12: 577-586. Kelley, W.L. 1998. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23: 222-227. Kim, K.N., J.S. Lee, H. Han, S.A. Choi, S.J. Go and I.S. Yoon. 2003. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts. Plant Mol. Biol. 52: 1191-1202. Klimczak, L.J., D. Farini, C.T. Loin, D. Ponti, A.R. Cashmore and G. Giuliano. 1995. Multiple isoforms of Arabidopsis casein kinase I combine conserved catalytic domains with variable carboxyl-terminal extensions. Plant Physiol. 109: 687-696. Kneissl, J., V. Wachtler, N.H. Chua and C. Bolle. 2009. Owl1: an Arabidopsis J-domain protein involved in perception of very low light fluences. The Plant cell 21: 3212-3225. Kushnir, S., E. Babiychuk, K. Kampfenkel, E. Belles-Boix, M.V. Montagu and D. Inze. 1995. Characterization of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide. Proc. Natl. Acad. Sci. USA 92: 10580-10584. Lam, E., N. Kato and M. Lawton. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411: 848-853. Landry, S.J. 2003. Swivels and stators in the HSP40-HSP70 chaperone machine. Structure 11: 1465-1466. Lee, J.Y. and W.J. Lucas. 2001. Phosphorylation of viral movement proteins—regulation of cell-to-cell trafficking. Trends Microbiol. 9: 5-8. Lee, J.Y., K. Taoka, B.C. Yoo, G. Ben-Nissan, D.J. Kim and W.J. Lucas. 2005. Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins. The Plant cell 17: 2817-2831. Liu, J.Z. and S.A. Whitham. 2013. Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. Plant J. 74: 110-121. Liu, W., Z.H. Xu, D. Luo and H.W. Xue. 2003. Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J. 36: 189-202. Long, A., H. Zhao and X. Huang. 2012. Structural basis for the interaction between casein kinase 1 delta and a potent and selective inhibitor. J. Med. Chem. 55: 956-960. Medina, V., V.V. Peremyslov, Y. Hagiwara and Dolja.V. V. 1999. Subcellular localization of the HSP70-homolog encoded by beet yellows closterovirus. Virology 260: 173-181. Miernyk, J.A. 2001. The J-domain proteins of Arabidopsis thaliana an unexpectedly large and diverse family of chaperones. Cell Stress Chaperon 6: 209-218. Min, L., L. Zhu, L. Tu, F. Deng, D. Yuan and X. Zhang. 2013. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J. 75: 823-835. Morton, J.F. 1987. The horned cucumber, alias kiwano (Cucumis metuliferus, cucubitaceae). Econ. Bot. 41: 325-327. Nakagawa, H., T. Saijyo, N. Yamauchi, M. Shigyo, S. Kako and A. Ito. 2001. Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Sci. Hortic. 90: 85-92. Napoli, C., C. Lemieux and R. Jorgenen. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant cell 2: 279-289. Osusky, M., L. Osuska, R.E. Hancock, W.W. Kay and S. Misra. 2004. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res. 13: 181-190. Park, H.Y., S.Y. Lee, H.Y. Seok, S.H. Kim, Z.R. Sung and Y.H. Moon. 2011. EMF1 interacts with EIP1, EIP6 or EIP9 involved in the regulation of flowering time in Arabidopsis. Plant Cell Physiol. 52: 1376-1388. Prowldenti, R. and D. Gonsalves. 1982. Resistance to papaya ringspot virus in Cucumis metuliferus and its relationship to resistance to watermelon mosaic virus 1. J. Hered. 73: 239-240. Quilis, J., G. Penas, J. Messeguer, B. C. and B.S. Segundo. 2008. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol. plant-microbe. interact. 21: 1215-1231. Rajagopalan, P.A. and R. Perl-Treves. 2005. Improved cucumber transformation by a modified explant dissection and selection protocol. HortScience 40: 431-435. Rajan, V.B. and P. D'Silva. 2009. Arabidopsis thaliana j-class heat shock proteins: Cellular stress sensors. Funct. Integr. Genomics 9: 433-446. Sasaki, N., J.W. Park, A.J. Maule and R.S. Nelson. 2006. The cysteine-histidine-rich region of the movement protein of cucumber mosaic virus contributes to plasmodesmal targeting, zinc binding and pathogenesis. Virology 349: 396-408. Savary, S., A. Ficke, J. Aubertot and C. Hollier. 2012. Crop losses due to diseases and their implications for global food production losses and food security. Food Security 4: 519-537. Sedbrook, J.C., R. Chen and P.H. Masson. 1999. ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc. Natl. Acad. Sci. USA 96: 1140-1145. Shimizu, T., A. Yoshii, K. Sakurai, K. Hamada, Y. Yamaji, M. Suzuki, S. Namba and T. Hibi. 2009. Identification of a novel tobacco DnaJ-like protein that interacts with the movement protein of tobacco mosaic virus. Arch. Virol. 154: 959-967. Siebert, P.D., A. Chenchik, D.E. Kellogg, K.A. Lukyanov and S.A. Lukyanov. 1995. An improved pcr method for walking in uncloned genomic DNA. Nucleic Acids Res. 23: 1087-1088. Siguenza, C., M. Schochow, T. Turini and A. Ploeg. 2005. Use of Cucumis metuliferus as a rootstock for melon to manage meloidogyne incognita. J. Nematol. 37: 276-280. Soellick, T., J.F. Uhrig, G.L. Bucher, J.W. Kellmann and P.H. Schreier. 2000. The movement protein nsm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc. Natl. Acad. Sci. USA 97: 2373-2378. Suetsugu, N., T. Kagawa and M. Wada. 2005. An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. Plant Physiol. 139: 151-162. Takahashi, A., C. Casais, K. Ichimura and K. Shirasu. 2003. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 11777-11782. Tamura, K., H. Takahashi, T. Kunieda, K. Fuji, T. Shimada and I. Hara-Nishimura. 2007. Arabidopsis KAM2/GRV2 is required for proper endosome formation and functions in vacuolar sorting and determination of the embryo growth axis. The Plant cell 19: 320-332. Tan, M.P. 2010. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol. Biochem. 48: 21-26. Tang, F.A. and Z.K. Punja. 1989. Isolation and culture of protoplasts of Cucumis sativus and Cucumis metuliferus and methods for their fusion. Rep. Cucurbit Genet. Coop. 12: 29-34. von Bargen, S., K. Salchert, M. Paape, B. Piechulla and J.W. Kellmann. 2001. Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin and DnaJ-like chaperones. Plant Physiol. Biochem. 39: 1083-1093. Waigmann, E., M.H. Chen, R. Bachmaier, S. Ghoshroy and V. Citovsky. 2000. Regulation of plasmodesmal transport by phosphorylation of tobacco mosaic virus cell-to-cell movement protein. EMBO J. 19: 4875-4884. Walsh, P., D. Bursac, Y.C. Law, D. Cyr and T. Lithgow. 2004. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5: 567-571. Walters, S.A. and T.C. Wehner. 2002. Incompatibility in diploid and tetraploid crosses of Cucumis sativus and Cucumis metuliferus. Euphytica 128: 371-374. Wang, W., B. Vinocur, O. Shoseyov and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244-252. Wu, G.S., B.J. Shortt, E.B. Lawrence, J. Leon, K.C. Fitzsimmons, E.B. Levine, I. Raskin and D.M. Shah. 1997. Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol. 115: 427-435. Wu, G.S., B.J. Shortt, E.B. Lawrence, E.B. Levine, K.C. Titzsimmons and D.M. Shah. 1995. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. The Plant cell 7: 1357-1368. Wu, H.W., T.A. Yu, J.A. Raja, H.C. Wang and S.D. Yeh. 2009. Generation of transgenic oriental melon resistant to zucchini yellow mosaic virus by an improved cotyledon-cutting method. Plant Cell Rep. 28: 1053-1064. Wu, X. 2003. Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130: 3735-3745. Yang, K.Z., C. Xia, X.L. Liu, X.Y. Dou, W. Wang, L.Q. Chen, X.Q. Zhang, L.F. Xie, L. He, X. Ma and D. Ye. 2009. A mutation in THERMOSENSITIVE MALE STERILE 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant J. 57: 870-882. Yu, D., Z.X. Xie, C.H. Chen, B.F. Fan and Z.X. Chen. 1999. Expression of tobacco class II catalase gene activates the endogenous homologous gene and is associated with disease resistance in transgenic potato plants. Plant Mol. Biol. 39: 477-488. Zhang, H.J., P. Gao, X.Z. Wang and F.S. Luan. 2014. An efficient regeneration protocol for Agrobacterium-mediated transformation of melon (Cucumis melo L.). Genet. Mol. Res. 13: 54-63. Zhao, Z.C., W.R. Zhang, J.P. Yan, J.J. Zhang, Z. Liu, X.F. Li and Y. Yi. 2010. Over-expression of Arabidopsis DnaJ (HSP40) contributes to NaCl-stress tolerance. Afr. J. Biotechnol. 9: 972-978. Zhou, J.M., Y.T. Lob, R.A. Bressan and G.B. Martin. 1995. The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83: 925-935. Zipfel, C., G. Kunze, D. Chincilla, A. Caniard, D.G. Jones, T. Boller and F. Georg. 2006. Perception of the bacterial pamp EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749-760.
摘要: 
刺角瓜(Cucumis metuliferus)為原產於西非的水果,對許多瓜類病蟲害有極佳抗性或耐性,是良好的抗病基因來源,刺角瓜品系PI292190對於會嚴重影響作物產量的木瓜輪點病毒(papaya ringspot virus, PRSV)具有抗性,本論文自此品系中篩選出可能的參與刺角瓜抗病反應的候選基因Cm8及Cm23基因片段,並利用干擾性核醣核酸(RNA interference, RNAi)技術,將帶有正反向Cm8或Cm23基因片段的載體,轉殖入PI292190中,以逆向遺傳學的原理分析候選基因之功能。此外,分析Cm8及Cm23基因在刺角瓜接種PRSV後的表現,發現Cm8及Cm23基因接種PRSV後表現量都有上升的情形。本論文也以genome walking及快速增幅cDNA末端快速擴增cDNA末端(rapid-amplification of cDNA ends, RACE)等技術,選殖Cm8及Cm23基因的全長片段,並於資料庫中進行序列比對分析,以及序列編碼的蛋白功能預測,結果發現Cm8基因為編碼heat shock protein 40 (HSP40)類型的蛋白,Cm23基因則為編碼casein kinase I (CKI)類型的蛋白。進一步將刺角瓜的Cm8及Cm23基因全長的片段構築於過表現載體中,並轉殖入圓葉菸草(Nicotiana banthamiana)及番茄(Solanum lycopersium)中,未來,在獲得轉殖株後,將繼續進行後代分析及病毒接種,期望以功能性互補試驗證明候選基因與異源植物抗病毒功能的相關性。

Horned melon (Cucumis metuliferus) is endemic in southern and central Africa, where it is eaten as fruit line, PI 292190 (L37), shows strong resistance to papaya ringspot virus (PRSV) causing serve damages to the yield and fruit quality of papaya and cucurbits. In this study, Cm8 and Cm23 genes, potentially involving PRSV-resistance, were isolated from L37. To investigate their resistant function against PRSV, RNA interference (RNAi) containing sense and antisense Cm8 or Cm23 gene fragments, were transformed into L37. In addition, Cm8 or Cm23 gene were all induced in C. metuliferus after inoculating by PRSV. Rapid-amplification of cDNA ends (RACE) and Genome walking were conducted to obtain full-length Cm8 and Cm23 cDNA and genomic fragments. Cm8 gene was predicted to encode heat shock protein 40 (HSP40) protein, and Cm23 gene was predicted to encode casein kinase I (CKI) protein. To verify their relationships with disease resistance, complementation experiments were performed in which full-length cDNA and genomic fragments of both candidates were overexpressed in Nicotiana bethaminana and Solanum lycopersium. Transgenic plants will be generated and their PRSV-resistance will be verified in the future.
URI: http://hdl.handle.net/11455/89478
其他識別: U0005-0302201502533800
Rights: 同意授權瀏覽/列印電子全文服務,2018-02-03起公開。
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101031105-1.pdf3.6 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.