Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89484
標題: Characterization of RbohD/ein2-5 double mutant under Hypoxia Stress
RbohD/ein2-5雙突變株在缺氧逆境下之特性分析
作者: 洪晨溥
Chen-Pu Hong
關鍵字: ethylene;hydrogen peroxide;hypoxia;乙烯;過氧化氫;缺氧
引用: Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y., and Sakuratani, T. (2002). Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science 163: 117-123. Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., and Ecker, J. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148-2152. Baxter-Burrell, A., Chang, R., Springer, P., and Bailey-Serres, J. (2003). Gene and enhancer trap transposable elements reveal oxygen deprivation-regulated genes and their complex patterns of expression in Arabidopsis. Ann. Bot. 91: 129-141. Baxter-Burrell, A., Yang, Z., Springer, P. S., and Bailey-Serres, J. (2002). RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296: 2026-2028. Beaudoin, N., Serizet, C., Gosti, F., and Giraudat, J. (2000). Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12: 1103-1115. Biemelt, S., Keetman, U., and Albrecht, G. (1998). Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant physiol. 116: 651-658. Bologa, K. L., Fernie, A. R., Leisse, A., Loureiro, M. E., and Geigenberger, P. (2003). A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiol. 132: 2058-2072. Cao, S., Chen, Z., Liu, G., Jiang, L., Yuan, H., Ren, G., Bian, X., Jian, H., and Ma, X. (2009). The Arabidopsis Ethylene-Insensitive 2 gene is required for lead resistance. Plant Physiol. Biochem. 47: 308-312. Chen, H., Qualls, R. G., and Blank, R. R. (2005). Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquatic Botany 82: 250-268. Coelho, S. M. B., Brownlee, C., and Bothwell, J. H. F. (2008). A tip-high, Ca2+-interdependent, reactive oxygen species gradient is associated with polarized growth in Fucus serratus zygotes. Planta 227: 1037-1046. Drew, M. C., Greg, C. B., Johnson, J. R., Andrews, D., Morgan, P. W., Jordan, W., and He, C. J. (1994). Metabolic acclimation of root tips to oxygen deficiency. Ann. Bot. 74: 281-286. Dunand, C., Crevecoeur, M., and Penel, C. (2007). Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New phytol. 174: 332-341. Esashi, Y., Matsuyama, S., Hoshina, M., Ashino, H., and Ishizawa, K. (1990). Mechanism of action of ethylene in promoting the germination of cocklebur seeds. Plant Physiol. 17: 537-550. Feller, U., Anders, I., and Demirevska, K. (2008). Degradation of rubisco and other chloroplast proteins under abiotic stress. Plant Physiol. 34: 5-18. Fennoy, S. L., Nong, T., and Bailey-Serres, J. (1998). Transcriptional and post-transcriptional processes regulate gene expression in oxygen-deprived roots of maize. Plant J. 15: 727-735. Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., Linstead, P., Costa, S., Brownlee, C., Jonathan, J. D. G., Jonesk, J. M. D., and Liam, D. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446. Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. Plant Cell 12: 393-404. Fukao, T., and Bailey-Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl. Acad. Sci. 105: 16814-16819. Fukao, T., Xu, K., Ronald, P. C., and Bailey-Serres, J. (2006). A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18: 2021-2034. Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Plant Biol. 6: 247-256. Gravatt, D. A., and Kirby, C. J. (1998). Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiol. 18: 411-417. Gu, Y., Wang, Z., and Yang, Z. (2004). ROP/RAC GTPase: an old new master regulator for plant signaling. Plant Biol. 7: 527-536. Gunawardena, A. H., Pearce, D. M., Jackson, M. B., Hawes, C. R., and Evans, D. E. (2001). Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.) Planta 212: 205-214. Hattori, Y., Nagai, K., Furukawa, S., Song, X. J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460: 1026-1030. He, C. J., Finlayson, S. A., Drew, M. C., Jordan, W. R., and Morgan, P. W. (1996a). Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiol. 112: 1679-1685. He, C. J., Morgan, P. W., and Drew, M. C. (1996b). Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation lnduced by hypoxia. Plant Physiol. 112: 463-472. Hinz, M., Wilson, I.W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E. S., Sauter, M., and Dolferus, R. (2010). Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153: 757-772. Holmer, M., and Bondgaard, E. J. (2001). Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquat Bot. 70: 29-38. Huang, Y., Li, H., Hutchison, C. E., Laskey, J., and Kieber, J. (2003). Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33: 221-233. Hurng, W. P., and Kao, C. H. (1993). Loss of starch and increase of α-amylase activity in leaves of flooded tobacco plants. Plant Cell Physiol. 34: 531-534. Jackson, M. B., and Armstrong, W. (1999). Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1: 274-287. Jackson, M. B., and Colmer, T. D. (2005). Response and adaptation by plants to flooding stress. Ann. Bot. 96: 501-505. Kawai, P. K. S., Barrero, R. A., Nishiguchi, M., and Uchimiya, H. (1998). Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta 204: 277-287. Klok, E. J., Wilson, I. W., Wilson, D., Chapman, S. C., Ewing, R. M., Somerville, S. C., Peacock, W. J., Dolferus, R., and Dennis, E. S. (2002). Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14: 2481-2494. Kludze, H. K., DeLaune, R. D., and Patrick, W. H. (1992). Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci. 57: 386-391. Koch, K. (2004). Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Plant Biol. 7: 235-246. Koornneef, M., Bentsink, L., and Hilhorst, H., (2002). Seed dormancy and germination. Curr. Opin. Plant Biol. 5: 33-36. Laurentius, A. C. J., and Bailey-Serres, J. (2009). Genetics of high-rise rice. Nature 460: 959-960. Licausi, F., Kosmacz, M., Weits, D., Giuntoli, B., Giorgi, F. M., Voesenek, L. A. J. V., Perata, P., and Dongen, J. T. V. (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479: 419-423. Lin, Y., Chen, D., Paul, M., Zu, Y., and Tang, Z. (2012). Loss-of-function mutation of EIN2 in Arabidopsis exaggerates oxidative stress induced by salinity. Acta Physiol. Plant 35: 1319-1328. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, espectively, in Arabidopsis. Plant Cell 10: 1391-1406. Liu, F., Vantoai, T., Moy, L. P., Bock, G., and Linford, L. D., Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant physiol. 137: 1115-1129. Liu, Y., Ye, N., Liu, R., Chen, M., and Zhang, J. (2010). H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J. Exp. Bot. 61: 2979-2990. Lorbiecke, R., and Sauter, M. (1999). Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol. 119: 21-29. Loreti, E., Poggi, A., Novi, G., Alpi, A., and Perata, P. (2005). A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant physiol. 137: 1130-1138. Matile, P., Hortensteiner, S., Thomas, H., and Krautler, B. (1996). Chlorophyll breakdown in senescent leaves. Plant Physiol. 112: 1403-1409. Matsumura, H., Takano, T., Takeda, G., and Uchimiya, H. (1998). ADH1 is transcriptionally active but its translational product is reduced in a rad mutant of rice (Oryza sativa L.) which is vulnerable to submergence stress. Theor. Appl. Genet. 97: 1197-1203. McGrath, K. C., Dombrecht, B., Manners, J. M., Schenk, P. M., Edgar, C. I., Maclean, D. J., Scheible, W. R., Udvardi, M. K., and Kazan, K. (2005). Repressor and activator type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 139: 949-959. Mergemann, H., and Sauter, M. (2000). Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol. 124: 609-614. Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M. A., Shulaev, V., Dangl, J., and Mittler, R. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal 84: 1-10. Mustroph, A., and Albrecht, G. (2003). Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol. Plantarum 117: 508-520. Nakano, T., Suzuki, K., Fujimur, T. A., and Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140: 411-432. Nath, P., Trivedi, P. K., Sane, V. A., and Sane, A. P. (2006). Role of ethylene in fruit Ripening. Plant Physiol. 37: 151-184. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M., and Kuchitsu, K. (2008). Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 283: 8885-8892. Peng, H. P., Chan, C. S., Shih, M. C., and Yang, S. F. (2001). Signaling Events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. Plant Physiol. 126: 742-749. Perata, P., and Alpi, A. (1993). Plant responses to anaerobiosis. Plant Sci. 93: 1-17. Pog?ny, M., Rad, U. V., Gr?n, S., Dong?, A., Pintye, A., Simoneau, P., Bahnweg, G., Kiss, L., Barna, B., and Durner, J. (2009). Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis- Alternaria Pathosystem. Plant Physiol. 151: 1459-1475. Potock?, M., Jones, M. A., Bezvoda, R., Smirnoff, N., and ??rsk?, V. (2007). Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 174: 742-751. Rahman, M., Grover, A., Peacock, W. J., Dennis, E. S., and Ellis, M. H. (2001). Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Aust. J. Plant Physiol. 28: 1231-1241. Rivoal, J., and Hanson, A. D. (1994). Metabolic control of anaerobic glycolysis. Plant Physiol. 106: 1179-1185. Ruzicka, K., Ljung, K., Vanneste, S., Podhorska, R., Beeckman, T., Friml, J., and Benkova, E. (2007). Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19: 2197-2212. Sagi , M., and Fluhr, R., (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141: 336-340. Steffens, B., Geske, T., and Sauter, M. (2011). Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol. 190: 369-378. Steffens, B., and Sauter, M. (2009). Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21: 184-196. Subbaiah, C. C., and Sachs, M. M., (2003). Molecular and cellular adaptations of maize to flooding stress. Ann. Bot. 91: 119-127. Suzuki, N., Mille,r G., Morales, J., Shulaev, V., Torres, M. A., and Mittler, R. (2011). Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14: 691-699. Swarup, R., Perry, P., Hagenbeek, D., Straeten, D., Beemster, G. T., Sandberg, G., Bhalerao, R., Ljung, K., and Bennett, M. J. (2007). Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19: 2186-2196. Torres, M. A., Dang, J. L., and Jones, J. D. G. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. 99: 517-522. Umeda, M., and Uchimiya, H. (1994). Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress. Plant Physiol. 106: 1015-1022. Vergara, R., Parada, F., Rubio, S., and Perez, F. J. (2012). Hypoxia induces H2O2 production and activates antioxidant defence system in grapevine buds through mediation of H2O2 and ethylene. J. Exp. Bot. 63: 4123–4131. Vervuren, P. J. A., Blom, C. W. P. M., and DeKroon, H. (2003). Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. J. Ecol. 91: 135-46. Voesenek, L. A. C. J., and Bailey-Serres, J. (2009). Genetics of high-rise rice. Nature 460: 959-960. Xie, Y. J., Xu, S., Han, B., Wu, M. Z., Yuan, X. X., Han, Y., Gu, Q., Xu, D.K., Yang, Q., and Shen, W. B. (2011). Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J. 66: 280-292. Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C., and Mackill, D. J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705-708. Yang, C. Y. (2014). Hydrogen peroxide controls transcriptional responses of ERF73/ATERF73/HRE1 and ADH1 via modulation of ethylene signaling during hypoxic stress. Planta 239: 877-885. Yang, C. Y., Hsu, F. C., Li, J. P., Wang, N. N., and Shih, M.C. (2011). The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant physiol. 156: 202-212. Yang, Z. (2002). Small GTPases: versatile signaling switches in plants. Plant Cell 14: 375-388.
摘要: 
植物荷爾蒙乙烯 (ethylene, ET),已被證實參與在高等植物遭遇淹水逆境時所導致的缺氧訊號傳遞路徑中。研究發現除了乙烯,過氧化氫 (hydrogen peroxide, H2O2)亦會在缺氧訊號下被累積,而過氧化氫之生成,可由位於細胞膜上之NADPH氧化?所產生。NADPH氧化?作用會生成超氧陰離子 (superoxide anion radical, O2-),且迅速被超氧化物歧化? (superoxide dismutase, SOD)氧化為過氧化氫。高等植物中NADPH氧化?又稱為respiratory burst oxidase homolog (Rboh)。為深入探討缺氧訊號路徑下,乙烯與過氧化氫交互作用之影響,本實驗利用阿拉伯芥野生型、ein2-5乙烯不敏感突變株、rbohD突變株及rbohD/ein2-5雙突變株進行缺氧環境下之生理及分子特性分析。種子萌發試驗結果顯示rbohD/ein2-5雙突變株具延遲種子萌發之現象,且rbohD/ein2-5雙突變種子萌發後幼苗生長時期根之生長速率較野生型快。缺氧處理下3,3'-diaminobenzidine (DAB)染色結果顯示,rbohD/ein2-5雙突變株內過氧化氫累積較野生型少,且rbohD/ein2-5雙突變株幼苗之根長未如野生型呈現根長受抑制之現象。葉綠素試驗顯示,缺氧訊號下rbohD/ein2-5雙突變株幼苗葉綠素含量較野生型低。進一步利用即時定量聚合?鏈鎖反應 (real-time quantitative PCR)分析結果發現,受缺氧所誘導之hypoxia responsive element 1 (AtERF73/HRE1)與alcohol dehydrogenase 1 (ADH1)表現量,在rbohD/ein2-5雙突變株中誘導表現量較野生型、rbohD單突變株及ein2-5單突變株低。進一步利用RbohDpro::GUS轉殖株偵測RbohD啟動子在不同組織中之表現情形,發現RbohD啟動子表現於幼苗根部維管束與葉片之部位。綜合以上實驗結果顯示,於正常生長情況下乙烯與過氧化氫之交互作用影響種子萌發與萌發後根之生長速率,於缺氧逆境下參與調控幼苗根之生長、葉綠素含量及缺氧相關基因之表現。

Under conditions of limited oxygen availability (hypoxia), the phytohormone ethylene is involved in hypoxia signalling pathway in higher plants. Previous research in our laboratory showed that in addition to ethylene, the hydrogen peroxide (H2O2) was also accumulated under hypoxic stress which was produced by the potential source of NADPH oxidase. The NADPH oxidase family is localized in the plasma membrane and transfers electrons from cytosolic NADPH or NADH to apoplastic oxygen, leading to the production of apoplastic superoxide. The SODs rapidly catalyze the production of H2O2 from superoxide. The functional relationship between ethylene and H2O2 in the hypoxia signaling mechanism is still poorly understood. To further investigate the interplay of ethylene and H2O2 under hypoxia signalling pathway, we use Arabidopsis thaliana ecotype Columbia (Col-0), the ethylene-insensitive mutant ein2-5 (Col-0), the RbohD (At5g47910) T-DNA insertion mutant and rbohD/ein2-5 double mutant was used to further physiological characterization and molecular analysis under hypoxic stress. Results from seeds germination and post-germination of seedling growth showed that the rbohD/ein2-5 double mutant was presented delay seeds germination but the root growth rate was faster compare with wild-type under normoxia condition. The 3,3'-diaminobenzidine (DAB) staining showed that the rbohD/ein2-5 double mutant was presented lower H2O2 accumulation compare with wild-type under hypoxia condition. The roots growth of rbohD/ein2-5 double mutant was not inhibited after submergence treatment. Furthermore, the level of chlorophyll content of rbohD/ein2-5 double mutant was display lower than wild-type after submergence treatment. The quantitative RT-PCR analysis was shown that induction level of AtERF73/HRE1 and AtADH1 transcripts was lower in rbohD/ein2-5 double mutant during hypoxic stress compare with wild-type, RbohD knockout mutant and ein2-5. The GUS expression was detected in the seeding vasculature and leaves in RbohDpro::GUS transgenic plants. Taken together, our results show that the interplay of ethylene and H2O2 influence seeds germination and post-germination stage under normoxia condition. Moreover, ethylene and H2O2 are involved in modulating root growth of seedlings, chlorophyll content of leaves and hypoxia-inducible genes expression under hypoxia condition.
URI: http://hdl.handle.net/11455/89484
其他識別: U0005-2811201416181338
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101031204-1.pdf2.46 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.