Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89491
標題: The genetic analysis with diallel cross for bitter gourd (Momordica charantia L.)
應用全互交法分析苦瓜之遺傳行為
作者: 張勝智
Sheng-Chih Chang
關鍵字: NO;無
引用: 全中和。2007。藥食兩用的東方蔬菜-苦瓜。科學發展 418: 10-13。 向長萍、謝軍、聶啟軍、汪李平。2001。23 個苦瓜品種 (系) 農藝性 狀的主成分分析。華中農業大學學報 20 (4) : 378-381。 呂秀英。1991。全互交理論分析。科學農業 39 (3-4) : 71-80。 宋曉燕。2010。苦瓜雜種優勢及數量性狀研究。碩士論文。安徽:安 徽農業大學。 李伯年。1984。葫蘆科蔬菜-苦瓜之育種與苦瓜之採種。蔬菜育種與採 種 227-231。 李成章。1990。全互交與組合力在育種上之應用。園藝作物育種講習 會專刊 pp. 61-68。 余中偉。2008。苦瓜 7 個自交系雜種優勢及配合力研究。碩士論文。 武漢:華中農業大學。 余中偉、向長萍。2008。七個苦瓜自交系主要經濟性狀配合力與參數 分析。北方園藝 11: 21-24。 何千里、謝光照、盧煌勝。1994。玉米莖葉性狀與青割產量之全互交 分析。中華農業研究 43 (1) : 17-28。 周微波、卓齊勇、溫基、林明寶、葉曉青。1989。苦瓜雜種優勢利用 初報。中國蔬菜 pp. 10-12 范浩強、劉偉良、趙淑平、劉振昌。2012。苦瓜主要農藝性狀與總產 量相關性分析。農業研究與應用 4: 14-16。 胡開林、付群梅。2001。苦瓜主要經濟性狀的遺傳效應分析。園藝學 報 28 (4) : 323-326。 胡開林、付群梅、汪國平、胡志群。2002。苦瓜果色遺傳的初步研究。 中國蔬菜 6: 11-12。 莊華才、劉文清、高芳雲、杜彩嫻、梁少麗。2011。苦瓜主要性狀的 配合力與遺傳效應分析。廣東農業科學 2: 34-36。 郁宗雄。1984。苦瓜。台北:豐年社出版 pp.166-174。 陳甘澍、李碩朋。2005。蔬菜(果菜類)苦瓜。農家要覽:481-486。 陳小鳳、黃如葵、黃玉輝、羅海玲、陳振東。2011。苦瓜育種及相關 基礎研究進展。南方農業學報 42 (3) : 246-249。 高山、林碧英、施木田。2004。苦瓜主要農藝性狀的相關性和主成分 分析。上海農業學報 20:33-36。 高山、林碧英、曾小玲、林治良。2005。苦瓜產量及其相關性狀的配 合力和遺傳參數分析。21(4):38-41。 曾正明、況浩池、楊躍華、劉國民、郭啟高、李乾平。2007。苦瓜的 研究進展及展望。貴州農業科學 35 (2) : 124-126。 萬雄、王慶一、呂宗佳。1973。小麥品種間雜種優勢與組合力之研究。 中華農業研究 22 (2) : 161-171。 張武男、林國榮、曾富生。1977。甜椒的遺傳與育種行為之研究(二) 產量構成要素之完全互交法分析。中國園藝 23 (5) : 225-236。 張武男。1977。甜椒的遺傳與育種行為之研究(三)雜種第一株重、株 高、分枝數、總花期、始花期及成熟期之全互交法分析。中國園 藝 23 (5) : 237-246。 張德梅。1971。水稻數量性狀遺傳之研究Ⅰ半矮稻品種間之全互交。 中華農業之研究 20 (2) : 9-26。 張德梅。1980。水稻數量性狀遺傳之研究Ⅱ秈稉稻品種間之完全組合 互交。中華農業之研究 29 (2) : 107-114。 張玲玲。2006。苦瓜性別分化的形態學及生理基礎研究。碩士論文。 廣西:廣西大學。 張玉燦、李洪龍、黃賢貴、李祖亮、張偉光。2006。苦瓜若干經濟性 狀的遺傳特點觀察。福建農業學報 21(4) : 350-353。 張淩雲。2009。絲瓜主要經濟性狀的雜種優勢利用及遺傳特性研究 碩士論文。武漢:華中農業大學。 楊金興、曾富生、曹文龍、盧煌勝。1991。落花生型間雜交後裔莢果 及籽粒性狀之遺傳研究Ⅰ、F1 世代組合力及雜種優勢分析。中華 農業研究 40 (4) : 375-384。 楊金興、曹文龍、鄭耀星。1992。落花生早期世代全互交分析之研究。 中華農業研究 41 (4) : 338-348。 楊嘉凌。2009。水稻農藝及穀粒性狀的全互交分析。臺中區農業改良 場研究彙報 102: 51-58。 楊嘉凌。2011。稻米礦物元素含量的育種研究。博士論文 台中:國立中 興大學農藝學系研究所。 湯文通。1954。作物育種之原理與實施。 齊文隆。2005。苦瓜栽培管理。台中區農業栽培管理。 蕭吉雄、陽偉正。1988。全互交在胡瓜育種上之應用。蔬菜品種改 研討會 pp. 221-234。 蕭吉雄、王毓華、林子凱。2003。瓜類花性表現及全雌品系在採種上 之應用。種苗科技專訓 4 (42) : 2-8。 劉敏莉。1999。扁蒲產量性狀之全互交分析。行政院農業委員會高雄 區農業改良場研究彙報 11 (1) : 48-56。 劉敏莉。2001。黃秋葵農藝性狀育種行為之研究。碩士論文。台中:國 立中興大學農藝學系研究。 劉敏莉、郭介煒、吳詩都。2002。黃秋葵數量性狀之全互交分析。農 林學報 51 (3) : 57-66。 劉政國。2002。苦瓜產量雜種優勢與配合力研究。廣西農業生物科學 21 (4) : 238-241。 劉政國、肖喜祝。2004。苦瓜主要經濟性狀配合力與遺傳相關的研究。 廣西農業生物科學 23(1): 15-19。 劉政國、龍明華、秦榮耀、王先裕。2005。苦瓜主要品質性狀的遺傳 變異、相關和通徑分析。廣西植物 25: 426-430。 劉政國。2008。苦瓜雜種優勢及其與遺傳距離相關的研究。博士論文。 湖南:湖南農業大學。 謝光照、盧煌勝、何千里。1991。玉米開花期、吐絲期、頂穗節位及 葉數之全互交分析。中華農業研究 40 (4) : 365-374。 龔秋林、劉上信。2004。雜交苦瓜果實發育狀況研究。安徽農業 12: 18。 Behera, T. K. 2008. Heterosis in bitter gourd. Journal of New Seeds 6: 2-3, 217-221. Behera T. K., A. K. Singh and J. E. Staub. 2008. Comparative analysis of genetic diversity in Indian bitter gourd (Momordica charantia L.) using RAPD and ISSR markers for developing crop improvement strategies. Sci. Hortic. 115: 209-217. Behera,T. K., A. B. Gaikward, A. K. Singh and J. E. Staub. 2008. Relative efficiency of DNA markers (RAPD, ISSR and AFLP) in detecting genetic diversity of bitter gourd (Momordica charantia L.). J. Sci. Food Agric. 88: 733-737. Behera, T. K., S. S. Dey, A. D. Munshi, A. B. Gaikwad, A. Pal and I. Singh. 2009. Sex inheritance and development of gynoecious hybrids in bitter gourd (Momordica charantia L.). Sci. Hortic. 120: 130-133. Behera, T. K., S. Behera and L. K. Bharathi. 2010. Bitter gourd: botany, horticulture, breeding. Hort. Rev. 37: 101-141. Chaubey, A. K. and H. H. Ram. 2004. Heterosis for fruit yield and its components in bitter gourd (Momordica charantia L.) . Veg. Sci. 31 (1) : 51-53. Chowdhury, A. R. and B. Sikdar. 2005. Genetic analysis for nine fruit characters in relation to five parental diallel crossing of bitter gourd. J. Life Earth Science 1 (1) : 31-34. Dey, S.S., T. K. Behera, A. Pal and A. D. Munshi. 2005. Correlation and path coefficient analysis in bitter gourd (Momordica charantia L.). Veg. Sci. 32(2) : 173-176. Dey, S. S., A. K. Singh, D. Chandel and T. K. Behera. 2006. Genetic RAPD markers and agronomic traits. Sci. Hortic. 109 : 21-28. Dey S. S., T. K. Behera, A. D. Munshi, A. Pal and S. Rakshit. 2008.Gynoecy in bitter melon (Momordica charantia) for exploiting hybrid vigour. // Proc. IX EUCARPIA Meeting on genetics and breeding of Cucurbitaceae (May21-24, 2008). Avignon (France): INRA. pp. 539-542. Dey, S. S., T. K. Behera and A. D. Munshi. 2010. Gynoecious inbred with better combining ability improves yield and earliness in bitter gourd (Momordica charantia L.). Euphytica 173: 37-47. Dey, S. S., T. K. Behera, A. D. Munshi and R. Bhatia. 2011. Estimates of gene action in bitter gourd (Momordica charantia). Veg. Sci. 38 (1) :85-87. Gilbert, N. E.G. 1958. Diallel cross in plant breeding. Heredity 12: 477-492. Griffing, B. and E. W. Lindstrom. 1954. A study of the combining ability of corn inbreds having varying proportions of corn belt and non-corn belt germplasm. Agron. J. 46: 545-552. Griffing, B. 1956. A generalized treatment of the use of diallel crosses in quantitative inheritance. Heredity 10: 31-50. Hayman, B. I.1954a. The analysis of variance of diallel tables. Genetics 39: 789-809. Hayman, B. I.1954b. The theory and analysis of diallel crosses. Biometrics 10: 235-244. Herbert, W. J., H. F. Robinson, and R. E. Comstock. 1955. Estimates of genetic and environmental variability in soybeans.47 (7) : 314-318. Islam, M. R., M. S. Hossain, M. S. R. Bhuiyan, A. Husna and M. A. Syed. 2009. Genetic variability and path-coefficient analysis of bitter gourd (Momordica charantia L.). J. Sustain Agr. 1: 53-57. Jinks, J. L. 1954. The analysis of continuous variation in a diallel cross of nicotiana rustica varieties. Genetics 39: 767-778. Khatir, A.S., K. Singh and J. C. Takur. 2000. Combining ability studies in bitter gourd in relation to line X tester crossing system. Veg. Sci. 27(2) : 148-151 Kole, C., B. A. Olukolu, P. Kole1, V. K. Rao, A. Bajpai, S. Backiyarani, J. Singh, R. Elanchezhian and A. G. Abbott. 2012. The first genetic map and positions of major fruit trait loci of bitter melon (Momordica charantia). Journal of Plant Science and Molecular Breeding 1:1-6. Laxuman, S. A. P., P. M. Salimath and P. R. Dharmatti. 2012. Study on genetic diversity and its relation to heterosis in bitter gourd (Momordica charntia L.). Karnataka J. Agric. Sci. 25(1) : 14-17. Lin, C. 1985. Component analysis of heterozygous diallel crosses. Jour. Agric. Res. China 3 (4) : 475-483. Lin, C. 1986. Variance component analysis of unbalanced diallel crosses. Jour. Agric. Res. China 35 (4) : 460-474. Lin, M. S. and S. F. Lin. 1994. Pedigree analysis of soybean varieties. Bot. Acad. Sinica 35:87-93. Mole, T. J., S. N. Devl, S. Rajan and P. G. Sadhankumar. 2001. Heterosis and combining ability in ridge gourd (Luffa acutangula ROXB.). Veg. Sci. 28 (2) : 165-167. Mia, M. B., M. S. Islam and Z. H. Shamsuddin. 2014. Altered sex expression by plant growth regulators: An overview in medicinal vegetable bitter gourd (Momordica charantia L.). J. Med. Plants Res. 8 (8) : 361-367. Naliyadhara, M. V., L. K. Dhaduk, A.V. Barad and D. R. Mehta. 2010. Combining ability analysis in sponge gourd (Luffa cylindrical (ROEM.) L.). Veg. Sci. 37 (1) : 21-24. Olfati, J. A., H. Samizadeh, B. Rabiei and Gh. Peyvast. 2012. Griffing's methods comparison for general and specific combining ability in cucumber. The Scientific World Journal 1-4. Pandey, S., A. Jha, S. Kumar and M. Rai. 2010. Genetics and heterosis of quality and yield of pumpkin. Indian J. Hort. 67(3): 333-338. Raj, N. M., K. P. Prasanna and K. V. Peter. 1993. Bitter gourd Momodica spp. In 'Genetic improvement of vegetable crops',eds. G. Kalloo and B. O. Berch, pp. 239-246. New York: Pergamon Press. Rani, K. R., K. R. Reddy and Ch. S. Raju. 2014. Inheritance of yield and its related traits in bitter gourd (Momordica charantia L.). Mol. Plant Breed. 5 (1) : 1-4. Saleem, M.Y., M. Asghar, Q. Iqbal, A. U. Rahman and M. Akram. 2013. Diallel analysis of yield and some yield components in tomato (Solanum lycopersicum L.). Pak. J. Bot. 45 (4) : 1247-1250. Singh, A. X., U. B. Pandey and M. Singh. 2000. Studies on heterosis in bitter gourd (Momordica charantia L.). Veg. Sci. 27 (2) : 15R-161. Singh, A. K, R. S. Pan and P. Bhavana. 2013. Heterosis and combining ability analysis in bittergourd (Momordica charantia L.). The Bioscan 8 (4) : 1533-1536. Singh, B., A. K. Singh and, S. Kumar. 2013. Genetic Divergence Studies in Bitter Gourd (Momordica charantia L.). AJPS 6 (2) : 89-91. Tewari, D., H. H. Ram and H. R. Jaiswal. 2001. Studies on heterosis and combining ability in indigenous bitter gourd (Momordica charantia L.) for fruit yield. Veg. Sci. 28 (2) : 106-108. Thangamani, C., L. Pugalendhi, T. Sumathi, C. Kavitha and V. Rajashree. 2011. Estimation of combining ability and heterosis for yield and quality characters in bitter gourd (Momordica charantia L.). Electronic Journal of Plant Breeding 2 (1) : 62-66. Thangamani, C., L. Pugalendhi and T. Sumathi. 2012. Combining ability for characters related to yield and earliness in bitter gourd (Momordica charantia L.). Vegetable Sci. 39 (1) : 40-46.
摘要: 
苦瓜為台灣重要的夏季蔬菜,但對於苦瓜遺傳特性少有研究,為了解苦瓜農藝性狀之遺傳行為,本試驗以種苗改良繁殖場所純化的 55個自交系苦瓜為材料,進行自交系特性分析,在果長、果寬、果實圓周長、果重、果型指數、果肉厚度、果肉與髓厚度有顯著差異,顯示各自交系間 彼此均有歧異度與變異存在 為探討果實性狀間之關係,輔以相關分析法得知果長、果寬、果肉厚度及果肉與髓厚度均與果重呈現顯著正相關,可作為果實選拔的參考依據。進一步以 Griffing (1956) 及 Hayman (1954) 之全互交分析方法,探討苦瓜的組合力 雜種優勢與遺傳介量 首先以果型指數進行分群,選出最大遺傳歧異度之 343-2、48-1、298、156-1、350 及 42-2 等 6 個自交系,建立 36 個雜交 F1 組合。一般組合力效應,除果實乾重外,其餘性狀均達顯著水準,表示供試苦瓜材料之大部分性狀受累加性基因的作用。與產量構成要素有關的第一朵雌花開花日與節位以自交系298 表現 GCA 最小 在第 15~25 節雌花數以自交系 298 的 GCA 最大,因該自交系有高雌特性,可提供作育成高產品系之利用。然而,產量性狀,雖可以雌花性狀如第一朵雌花節位與雌花數作為篩選依據,但
市場對果實性狀需求之另一極為重要之因素,本試驗之材料中,產量
高與果實性狀表現佳的性狀,並未集中於某一自交系。特殊組合力效
應方面,第一朵雌花開花節位與日數,分別以 343-2 x 350 與 343-2 x
156-1 表現最佳 而主蔓第 15 節~第 25 節雌花數則以 298 x 350 最高;在果實性狀之果長與果重則以 298 x 42-2 與 156-1 x 48-1 有較高的SCA 效應。在性狀的基因效應與遺傳介量分析上,植株性狀同時受到累加性作用與顯性作用,節數、節間長之累加性效果大於顯性效果,在性狀的正負效應顯性基因呈現不對稱的分布,控制性狀的顯性基因群數有
3-4 群以上,除節數外,其餘性狀均屬增量基因控制。花器性狀方面,
各性狀之累加性效應均大於顯性效應,除第一朵雄花開花日數與子房
長為無顯性效果,其他花器性狀均為不完全顯性效應。果實性狀上,
果長、果重及果型指數之正負效應顯性基因均呈現不對稱的分布且累
加性效應均大於顯性效應 分別受果長受 4~5 群 果重與果型指數 2~3,群顯性基因控制,均為不完全顯性效應控制,同屬增量基因影響。

Bitter gourd is one of the Taiwan's major vegetable in summer, but it's rarely studied on genetic characteristics. In order to realize the bitter gourd of agronomic traits, we used 55 inbred lines which were purified in TPSIPS as experience materials. Assay the inbred lines characteristics had significant for fruit length, fruit width, fruit circumference, fruit weight, fruit shape index, flesh thickness, flesh and marrow thickness. They showed diversity and variation with each inbred lines. In order to explore the fruit characteristics correlation co-efficiency, this results showed positively correlation for fruit length, fruit width, flesh thickness and flesh and pith thickness which can use reference. Further the Griffing (1956) and Hayman (1954) diallel cross theory, we explored the combination, heterosis and genetic components. Divided the bitter gourds by fruit shape index, selecting six inbred lines which were 343-2, 48-1, 298, 156-1, 350 and 42-2. We established the 36 crossing combinations (F1). General combining ability effects, only the dry weight is not significant. That means that the other characteristics are significant except additive gene action. The other characteristics are significant. In the early yield components, the first female flowering day and node had the least GCA with 298 inbred line which described the earliness characteristic. However, we can selection the yield traits according to female characters by node numbers at first female flowering and female flower number, but the fruit traits are also very important. The early yield and fruit traits showed that were not focused on the specific inbred line. Specific combining ability effect, at first female flowering nodes and days had the best with 343-2x350 and 343-2x156-1. Female flower number on the main stem from fifteenth to twenty-fifth had the highest with 298x350. On the fruit traits, the fruit length and weight had higher SCA with 298x42-2 and 156-1x48-1. We observed the better performance to be used breeding with those combination. On the gene effects of traits and genetic components, the plant traits were controlled by additive and dominant effects, and additive effects were larger than dominant effects for internode number and internodal length. The positive and negative dominance gene of traits expressed the asymmetric distribution, and controlling the dominance gene were 3-4 groups. Almost all plant traits were controlled by incremental gene. On the flower traits, all characteristics of additive effects were larger than dominant effect. Days to first male flower and ovary length do not have dominant effect, and the other flower traits were partial-dominance effect. On the fruit characteristics, the fruit length, fruit weight and fruit shape index had positive and negative dominance gene of traits express the asymmetric distribution. The addictive effects of all fruit traits were larger than dominant effect. Fruit length, fruit weight and fruit shape index were controlled by 4-5 and 3-4 groups dominance genes. All fruit traits were controlled by partial- dominance and incremental gene effect.
URI: http://hdl.handle.net/11455/89491
其他識別: U0005-2005201510405200
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-15起公開。
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7096031108-1.pdf1.08 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.