Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89493
DC FieldValueLanguage
dc.contributor郭寶錚zh_TW
dc.contributorBo-Jein Kuoen_US
dc.contributor.author連柏雁zh_TW
dc.contributor.authorBo-Yan Lianen_US
dc.contributor.other農藝學系所zh_TW
dc.date2014zh_TW
dc.date.accessioned2015-12-07T08:42:22Z-
dc.identifierU0005-2303201509260200zh_TW
dc.identifier.citation王晨宇。2013。應用 two-step 模式與 M5'回歸樹建構台灣玉米花粉飄散預測模式及隔離距離的模式推估。碩士論文。台中,國立中興大學農系學系研究所。 余昇驊。2014。利用高斯煙羽-指數法模擬地景尺度下玉米花粉調控之基因流動-以嘉義朴子地區為例。碩士論文。台中,國立中興大學農藝學系研究所。 沈翰祖、郭寶錚。2012。基因轉殖作物監測體系之研究。農業生技產 業季刊 5: 30-38。 梁鳳文。2005。以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散。碩士論文。桃園,國立中央大學土木工程研究所。 郭華仁、周桂田。2004。基改作物的全球經驗。郭華仁、牛惠之(編輯)基因改造議題-從紛爭到展望: 120-157。行政院農業委員會動植物防疫檢疫局。 Anderson, S., M. J. Lauer, J. B. Schoper, and R. M. Shibles. 2004. Pollination timing effects on kernel set and silk receptivity in four maize hybrids. Crop. Sci. 44: 464-473. Angevin, F., E. K. Klein, C. Choimet, A. Gauffreteau, C. Lavigne, A. Messé an, and J. M. Meynard. 2008. Modelling impacts of cropping systems and climate on maize cross-pollination in agricultural landscapes: The MAPOD model. Eur. J. Agron. 28: 471-484. Aylor, D. E. 2002. Settling speed of corn (Zea mays) pollen. J. Aerosol Sci. 33: 1601-1607. Aylor, D. E., N. P. Schultes, and E. J. Shields. 2003. An aerobiological framework for assessing cross-pollination in maize. Agric. For. Meteorol. 119: 111-129. Bannert, M., and P. Stamp. 2007. Cross-pollination of maize at long distance. Eur. J. Agron. 27: 44-51. Beckie, H. J., and L. M. Hall. 2008. Simple to complex: Modelling crop pollen-mediated gene flow. Plant Sci. 175: 615-628. Bulant, C., A. Gallais, E. Matthys-Rochon, and J. L. Prioul. 2000. Xenia effects in maize with normal endosperm: II. kernel growth and enzyme activities during grain filling. Crop Sci. 40: 182-189. Della Porta, G., D. Ederle, L. Bucchini, M. Prandi, A. Verderio, and C. Pozzi. 2008. Maize pollen mediated gene flow in the Po valley(Italy): Source–recipient distance and effect of flowering time. Eur. J. Agron. 28: 255-265. Devos, Y., M. Demont, K. Dillen, D. Reheul, M. Kaiser, and O. Sanvido. 2009. Coexistence of genetically modified (GM) and non-GM crops in the European Union. Agron. Sustain. Dev. 29: 11-30. Devos, Y., D. Reheul, O. Thas, E. M. DE Clercq, M. Cougnon, and K.Cordemens. 2007. Implementing isolation perimeters around genetically modified maize fields. Agron. Sustain. Dev. 27: 1-11. Eastham, K., and J. Sweet. 2002. Genetically modified organisms (GMOs): the significance of gene flow through pollen transfer. [Online]. European Environment Agency. Web link to gopher archives (http://reports.eea.eu.int/environmental_issue_report_2002_28/en/GMOs%20for%20www.pdf) Ellstrand, N. C. 2003. Current knowledge of gene flow in plants: implications for transgene flow. Phil. Trans. R. Soc. Lond. B 358:1163-1170. Galeano, P., C. M. Debat, F. Ruibal, L. F. Fraguas, and G. A. Galvá n. 2010. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay. Environ. Biosafety Res. 9: 147-154. Garcı́a-Dı́az, J. C., and J. M. Gozalvez-Zafrilla. 2012. Uncertainty and sensitive analysis of environmental model for risk assessments: An industrial case study. Reliab. Eng. Syst. Saf. 107: 16-22. Goggi, A. S., H. Lopez-Sanchez, P. Caragea, M. Westgate, R. Arritt, and C. A. Clark. 2007. Gene flow in maize fields with different local pollen densities. Int. J. Biometeorol. 51: 493-503. Goss, J. 1968. Development, physiology and biochemistry of corn and wheat pollen. Bot. Rev. 34: 1597-1602. Gustafson, D. I., I. O. Brants, M. J. Horak, K. M. Remund, E. W. Rosenbaum, and J. K. Soteres. 2006. Empirical modeling of genetically modified maize grain production practices to achieve European Union labeling thresholds. Crop Sci. 46: 2133-2140. Hosmer, D. W., and S. Lemeshow. 2000. Applied logistic regression. 2nd ed. New York: John Wiley & Sons, Inc. pp. 161-162. Ivanovska, A., L. Todorovski, M. Debeljak, and S. Dz eroski. 2009. Modelling the outcrossing between genetically modified and conventional maize with equation discovery. Ecol. Modell. 220: 1063-1072. James, C. 2014. Global status of commercialized biotech/GM crops: 2013. ISAAA Brief 46. ISAAA, Ithaca, NY. Klein, E. K., C. Lavigne, X. Foueillassar, P.-H. Gouyon and C. Laré do. 2003. Corn pollen dispersal: quasi-mechanistic models and field experiments. Ecol. Monogr. 73: 131-150. Kuparinen, A. 2006. Mechanistic models for wind dispersal. Trends Plant Sci. 11: 296-301. Langhof, M., B. Hommel, A. Husken, C. Njontie, J. Schiemann, P. Wehking, R. Wilhelm, and G. Ruhl. 2010. Coexistence in maize:isolation distance in dependence on conventional maize field depth and separate edge harvest. Crop Sci. 50: 1496-1508. Loos, C., R. Seppelt, S. Meier-Bethke, J. Schiemann, and O. Richter. 2003. Spatially explicit modeling of transgenic maize pollen dispersal and cross-pollination. J. Theor. Biol. 225: 241-255. Luna, V. S., J. Figueroa, M. B. Baltasar, L. R. Gomez, J. B. Townsend,and J. B. Schoper. 2001. Maize pollen longevity and distance isolation requirement for effective pollen control. Crop Sci. 41:1551-1557. Marceau, A., B. Loubet, B. Andrieu, B. Durand, X. Foueillassar, and L.Huber. 2011. Modelling diurnal and seasonal patterns of maizepollen emission in relation to meteorological factors. Agric. For.Meteorol. 151: 11-21. Palaudelmà s, M., G. Penas, E. Melé , J. Serra, J. Salvia, M. Pla, A. Nadal,and J. Messeguer. 2009. Effect of volunteers on maize gene flow.Transgenic Res. 18: 583-594. Pasquill, F. 1961. The estimation of the dispersion of windborne material.meteorol. mag. 90: 33-49. Viaud, V., H. Monod, C. Lavigne, F. Angevin, and K. Adamczyk. 2008. Spatial sensitivity of maize gene-flow to landscape pattern: a simulation approach. Landsc. Ecol. 23: 1067-1079. Viljoen, C. D., B. K. Dajee, and G. M. Botha. 2006. Detection of GMO in food products in South Africa: Implication of labeling. Afr. J. Biotecgnol. 5: 73-82. Weekes, R., T. Allnutt, C. Boffey, S. Morgan, M. Bilton, R. Daniles, C. Henry. 2007. A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK. Transgenic Res. 16:203-211. Westgate, W., J. Lisazo, and W. Batchelor. 2003. Quantitative relationship between pollen-shed density and grain yield in maize. Crop. Sci. 43: 934-942. Yao, K., N. Hu, W. Chen, R. Li, Q. Yuan, F. Wang, Q. Qian, and S. Jia. 2008. Establishment of a rice transgene flow model for predicting maximum distances of gene flow in southern China. New Phytol.180: 217-228. Yoshimura, Y., K. Matsuo, and K. Yasuda. 2006. Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan. Environ. Biosafety Res. 5: 169-173.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/89493-
dc.description.abstract基因改造(genetically modified, GM)作物商業化種植後,引起許多共存(co-existence)問題。其中,GM 玉米以花粉式基因流動(pollenmediated gene flow, PMGF)散佈其改造基因,主要仰賴風力傳播,因此不同氣候會造成玉米 PMGF 有不一樣的影響範圍。台灣尚未有經核准 GM 作物在開放田間種植,在開放以前,需進行相關的試驗,評估 GM 作物基因流動的影響情況,藉此擬定相關共存政策,確保國人糧食安全以及避免破壞生態平衡。 本研究在台灣朴子地區進行為期兩年的玉米花粉飄散試驗,實地蒐集異交率之資料。選用紫色玉米模擬為 GM 玉米的花粉貢獻親,白色玉米模擬為非 GM 玉米的花粉接受親 藉由花粉直感效應判斷是否,發生異交。利用高斯煙羽模式代入開花期間平均風速與最大瞬間風速之風向的資料,計算接受親網格來自貢獻親的相對花粉濃度,再以gamma 模式將相對花粉濃度轉換為異交率估計值,此估計方法稱之為高斯煙羽-gamma 法。藉由 10 折交叉驗證法對模式進行驗證,結 果顯示決定係數的平均值為 0.71,誤差均方根的平均值為 0.031,表示模式具有良好解釋能力與配適能力。並藉由拔靴法推算出,當強制標示門檻值為 0.9%時,所需的隔離距離為 32.25 公尺。此外,本研究也將異交率根據強制標示門檻值轉換為類別變數,並以 logistic 模式配適。同樣藉由 10 折交叉驗證法對模式進行驗證,結果顯示,當門檻值為 0.9%時總正確率平均值為 85%,並推算出,所需的隔離距離為 47.25 公尺,此結果較為保守。 為了評估台灣農業栽培地景中玉米花粉飄散情形,本研究以高斯煙羽-gamma 法,模擬集中種植 GM 玉米時的花粉飄散情形。並評估施以去除保護行之可行性。模擬結果顯示,若將 GM 玉米集中種植於非 GM 玉米之下風處,同時將非 GM 田區直接面對 GM 田區邊界10 公尺的部分作為保護行,理論上可將平均異交率降至強制標示門檻值 0.9%以下。而若欲再降低異交率,可將保護行由 10 尺擴大至 20公尺,但礙於台灣田區多為狹長型態,需依情況再決定是否將保護行擴大至 20 公尺。zh_TW
dc.description.abstractSince the genetically modified (GM) crops commercially cultivated,there have been much coexistence debate. GM maize spreads its modified gene by pollen mediated gene flow (PMGF) and relies on wind, hence different factors would affect the PMGF on different climate regions. Currently, no GM crop is grown legally in the open field in Taiwan. Therefore, it is important to conduct relevant experiments and evaluate the influence of gene flow of GM crops for offering coexistence measure before the GM crops are allowed to be planted, and to ensure the food safety and avoid ecological impacts. In this study, the maize pollen dispersal experiments were conducted to collect the cross-pollination (CP) data at Puzih in 2009 and 2010. The purple kernel maize was used as pollen donor, and the white kernel maize was used as pollen recipient. Purple color is dominant over white by xenia effect. We used the Gaussian plume model (GPM) to calculate the relative pollen concentration (RPC) in the gridded quadrat by inputting the hourly mean wind speed and the hourly wind direction of instantaneous wind speed. Then, the gamma model was employed to transform the RPC to estimated CP rate. We called this estimated method as Gaussian plume -gamma approach. We evaluated the model by 10-fold cross-validation, and the results showed that the average coefficient of determination was 0.71 and the average RMSE was 0.031,confirming the ability of the model explanation and fitting. When the labeling threshold was set as 0.9, the isolation distance was 32.25 m simulated by the bootstrapping method. Furthermore, we transformed CP rate to categorical variable according to the targeted threshold and fitted them by the logistic model. Similarly, we evaluated the model by 10-fold cross-validation, and the results showed that the average percentage of correct was 85% when the labeling threshold was set as 0.9. The isolation distance was 47.25 m calculated by the logistic model which was more conservative. In order to evaluate the influence of maize pollen dispersal under agriculture landscape in Taiwan, we simulated maize PMGF by Gaussian- gamma approach when the GM maize was clustering and planted, and evaluated the implementing feasibility of the discarded pollen barrier. The simulated results showed that the harvests from the GM-facing rows in 10m at the downwind region in the clustering of GM field, theoretically, the average CP rate of non-GM field could be lower than the EU threshold of 0.9%. Although the average CP rate can be reduced further by elongating discarded pollen barrier to 20 m, it should depend on the real situation because the shape of fields are long and narrow in Taiwan.en_US
dc.description.tableofcontents摘要……………………………………………………………………… i Abstract ...................................................................................................... ii 目次........................................................................................................... iv 表目次....................................................................................................... vi 圖目次....................................................................................................... ix 第一章 前言...............................................................................................1 第二章 前人研究 ......................................................................................5 一、GM 與非 GM 玉米共存之概況 .....................................................5 二、玉米花粉飄散之影響因子 .............................................................7 (一)垂直距離 .......................................................................................8 (二)風速與風向 .................................................................................12 (三)花粉競爭 .....................................................................................13 三、玉米開花特性與花粉直感(xenia)................................................14 四、高斯煙羽模式(Gaussian plume model) .......................................16 五、農業地景(agricultural landscape)下玉米 PMGF 之模擬 ............18 第三章 材料與方法 ................................................................................25 一、田區試驗 .......................................................................................25 (一) 田區配置 ...................................................................................25 (二) 開花期與氣象資料 ...................................................................25 (三) 抽樣調查與雜交檢測 ...............................................................27 二、高斯煙羽模式 ...............................................................................27 (一) 高斯煙羽模式與轉換 ...............................................................27 (二) 統計分析 ...................................................................................31 iv 三、台灣朴子地區農業地景模擬 .......................................................31 四、logistic 迴歸模式 ..........................................................................33 第四章 試驗結果與模擬結果 ................................................................47 一、試驗調查結果 ...............................................................................47 (一) 2009 年春作 ...............................................................................47 (二) 2009 年秋作 ...............................................................................47 (三) 2010 年春作 ...............................................................................48 二、高斯煙羽模式估算結果 ...............................................................49 三、gamma 模式轉換結果 ..................................................................50 四、拔靴法模擬結果 ...........................................................................51 五、台灣朴子地區農業地景模擬結果 ...............................................52 六、logistic 模式的建立與應用 ..........................................................57 第五章 結論與建議 ................................................................................92 參考文獻...................................................................................................94zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-05-11起公開。zh_TW
dc.subjectnoen_US
dc.subjectzh_TW
dc.titleSimulating the pollen dispersal of maize in the landscape scale and using predicted model to evaluate the isolation distance for coexistence between GM and non-GM maizeen_US
dc.title模擬在地景尺度下之玉米花粉飄散及利用預測模式評估基改與非基改玉米共存的隔離距離zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-05-11zh_TW
dc.date.openaccess2018-05-11-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:農藝學系
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100031301-1.pdf9.32 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.