Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89500
標題: Characterization of physiology and molecular in upland rice under submergence and heat stress
淹水及高溫逆境下陸稻幼苗之生理及分子特性分析
作者: 楊斯羽
Si-Yu Yang
關鍵字: upland rice;submergence;heat;陸稻;淹水;高溫
引用: 潘昶儒。2010。花蓮區珍貴多樣化的陸稻資源。花蓮區農業專訊。73: 6-8。 丁文彥。2012。陸稻—東陸1、2、3 號品種介紹。臺東區農業專訊。79: 8-11。 呂坤泉,許志聖,楊嘉凌。2005。水稻的栽培生態分類與稻米市場分類。臺中區農業專訊。50: 24-27. Arpagaus, S., and R. Braendle, 2000. The significance of α‐amylase under anoxia stress in tolerant rhizomes (Acorus calamus L.) and non‐tolerant tubers (Solanum tuberosum L., var. Desiree). J. Exp. Bot. 51: 1475-1477. Ashraf, M., and M. Hafeez, 2004. Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol. Plant. 48: 81-86. Bailey-Serres, J., and L. A. C. J. Voesenek, 2008. Flooding stress: acclimations and genetic diversity. Plant Biol. 59: 313-39. Banti, V., F. Mafessoni, R. Loreti, A. Alpi, and P. Perata, 2010. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol. 152: 1471-1483. Bianka, S. and S. Margret, 2009. Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21: 184-196. Bieniawska, Z., D. P. Barratt, A. P. Garlick, Thole, N. J. Kruger, C. Martin, R. Zrenner, and A. M. Smith, 2007. Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 49: 810-828. Blokhina, O., E. Virolainen, and K. V. Fagerstedt, 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179-194. Crawford, R. M. M., and R. Braendle, 1996. Oxygen deprivation stress in a changing environment. J. Exp. Bot. 47: 145-159. Damanik, R. I., M. R. Ismail, Z. Shamsuddin, S. Othman, A. M. Zain, and M. Maziah, 2012. Response of antioxidant systems in oxygen deprived suspension cultures of rice (Oryza sativa L.) Plant Growth Regul. 67: 83-92. Damanik, R. I., M. Maziah, M. R. Ismail, S. Ahmad, and A. M. Zain, 2010. Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta Physiol Plant. 32: 739-747. Downs, C. A., J. S. Coleman, amd S. A. Heckathorn, 1999. The chloroplast 22-Ku heat-shock protein: a lumenal protein that associates with the oxygen evolving complex and protects photosystem II during heat stress. J. Plant Physiol. 155: 477-487. Duck, N. B., and W. R. Folk, 1994. Hsp70 heat shock protein cognate is expressed and stored in developing tomato pollen. Plant Mol. Biol. 26: 1031-1039. Dunand, C., M. Crevecoeur, and C. Penel, 2007. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol. 174: 332-341. Drew, M. C., G. B. Cobb, J. R. Johnson, D. Andrews P. W. Morgan, W. Jordan, and C. J. He, 1994. Metabolic acclimation of root tips to oxygen deficiency. Ann. Bot. 74: 281-286. Drew, M. C. and E. J. Sisworo, 1977. Early effects of flooding on nitrogen deficiency and leaf chlorosis in barley. New Phytol.79: 567-571. Ebrahim, M. K., O. Zingsheim, M. N. El-Shourbagy , P. H. Moore, and E. Komor 1998. Growth and sugar storage in sugarcane grown at temperatures below and above optimum. J. Plant Physiol. 153: 593-602. Efeoglu, B., and S. Terzioglu, 2009. Photosynthetic responses of two wheat varieties to high temperature. EurAsia. J. BioSci. 4: 97-106. Evans, D. E. 2003. Aerenchyma formation. New phytol. 161: 35-49. Ferris, R., R. H. Ellis, T. R. Wheeler, and P. Hadley, 1998. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann. Bot. 82: 631-639. Feussner, K., I. Feussner, I. Leopold, and C. Wasternack, 1997. Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato—the first stress-induced UBC of higher plants. Fed. Eur. Biochen. Soc. Lett. 409: 211-215 Fukao, T. and J. Bailey-Serres, 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceed. Natl. Acad. Sci. 105: 16814-16819. Fukao, T., K. Xu, P. C. Ronald, and J. Bailey-Serres, 2006. A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18: 2021-2034. Gibbs, J., and H. Greenway, 2003. Review: mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Plant Biol. 30: 353-353. Gounaris, K., A. R. R. Brain, and P. J. Quinn, 1984. Structural reorganisation of chloroplast thylakoid membranes in response to heat-stress. B. B. A.- Bioenerg. 766: 198-208. Guilioni, L., J. Wery, and J. Lecoeur, 2003. High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Funct. Plant Biol. 30: 1151 - 1164. Hattori, Y., K. Nagai, S. Furukawa, X. J. Song, R. Kawano, H. Sakakibara, J. Wu, T. Matsumoto, A. Yoshimura, H. Kitano, M. Matsuoka, H. Mori, and M. Ashikari, 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460: 1026-1030. Holmer, M., and E. J. Bondgaard, 2001. Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquat. Bot. 70: 29-38. Hong, S. W., and E. Vierling, 2000. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proceed. Natl. Acad. Sci. 97: 4392-4397. Howarth, M., K. Takao, and Y. Hayashi, 2005. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proceed. Natl. Acad. Sci. 102: 7583-7588. Hwang, S. Y., and T. T. Vantoai, 1991. Abscisic acid induces anaerobiosis tolerance in corn. Am. Soc. Plant Biol. 97: 593-597. Jagadish, S. V. K., P. Q. Craufurd, and T. R. Wheeler, 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp. Bot. 58: 1627-1635. Jung, K. H., Y. S. Seo, H. Walia, P. Cao, T. Fukao, P. E. Canlas, F. Amonpant, J. Bailey-Serres, P. C. Ronald, 2010. The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Plant Biol. 152: 1674-1692. Katiyar-Agarwal, S., M. Agarwal, and A. Grover, 2003. Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol. Biol. 51: 677-686. Kato, M. and S. Shimizu, 1985. Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol. 26: 1291-1301. Klok, E. J., I. W. Wilson, D. Wilson, S. C. Chapman, R. M. Ewing, S. C. Somerville, W. J. Peacock, R. Dolferus, and E. S. Dennis, 2002. Expression profile analysis of the low-oxygen response in Arabidopsis root cultures, Plant Cell 14: 2481-2494. Koch, K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7: 235-246. Konigshofer, H., H. W. Tromballa, H. G. Loppert, 2008. Early events in signalling high‐temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant Cell 31: 1771-1780. Korotaeva, N. E., A. I. Antipina, and O. I. Grabelnykh, 2001. Mitochondrial low-molecular-weight heat-shock proteins and the tolerance of cereal mitochondria to hyperthermia. Russ. J. Plant Physiol. 48: 798-803. Latijnhouwers, M., X. M. Xu, and S. G. Moller, 2010. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta 232: 567-578. Lee, G. J., and E. Vierling, 2000. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Am. Soc. Plant Biol. 122: 189-198. Liu, Y. F., M. F. Qi, and T. L. Li, 2012. Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci. 196: 8-17. Liu, X., and B. Huang, (2000). Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40: 503-510. MacAdam, J. W., C. J. Nelson, and R. E. Sharp, 1992. Peroxidase activity in the leaf elongation zone of tall fescue1. Plant Physiol. 99: 872-878. Madoka, A., K. Takahiro, K. Mikiko, S. Hitoshi, K.Takuya, K. Takeshi, B. Rosalyn, A. Shim, K. Hidemi, N. Keisuke, and A. Andmotoyuki, 2014. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ. 37: 2313-2324. Maestri, E., N. Klueva, C. Perrotta, M. Gulli, H. T. Nguyen, and N. Marmiroli, 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 48: 667-681. Matile, M., S. Hortensteiner, H. Thomas, and B. Krautler. 1996. Chlorophyll Breakdown in Senescent Leaves. Plant Physiol. 112: 1403-1409. Matsui, T., and H. Kagata, 2003. Characteristics of floral organs related to reliable self pollination in rice (Oryza sativa L.). Ann. Bot. 91: 473–477. Matsui, T., K. Omasa, and T. Horie, 2000. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod. Sci. 3: 430-434. Mergemann, H., and M. Sauter, 2000. Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol. 124: 609-614. Mommer, L., and E. J. W. Visser, 2005. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann. Bot. 96: 581-589. Mustroph, A., S. C. Lee, T. Oosumi, and M. E. Zanetti, 2010. Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Am. Soc. Plant Biol. 152: 1484-1500. Nagai, K., Y. Hattori and M. Ashikari. 2010. Stunt or elongate? Two opposite strategies by which rice adapts to floods. Plant J. 123: 303-309. Neill, S. J., R. Desikan, A. Clarke, R. D. Hurst, and J. T. Hancock, 2002 Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 53: 1237-1247. Nieto-Sotelo, J., L. M. Martinez, G. Ponce, G. I. Cassab, A. Alagon, R. B. Meeley, J. M. Ribaut, and R. Yang, 2002. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Am. Soc. Plant Biol. 14: 1621-1633. Paoletti, F., D. Aldinucci, A. Mocali, and A. Caparrini, 1985. A sensitive spectrophotomertric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154: 536-541. Peet, M. M., S. Sato, and R. G. Gardner, 1998. Comparing heat stress effects on male‐fertile and male‐sterile tomatoes. Plant Cell Environ. 21: 225-231. Perata, P., and L. A.C.J. Voesenek, 2007. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Plant Sci. 12: 43-46. Prasinos, C., K. Krampis, D. Samakovli, and P. Hatzopoulos, 2005. Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development. Soc. Exp. Biol. 56: 633-644. Rivoal, J., and A. D. Hanson, 1994. Metabolic control of anaerobic glycolysis overexpression of lactate dehydrogenase in transgenic tomato roots supports the davies-roberts hypothesis and points to a critical role for lactate secretion. Plant Physiol. 106: 1179-1185. Roberts, J. k. M., J. Callist, O. Jardetzky, V. Walbott, and M. Freeling, 1984. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci. 81: 6029-6033. Sagi, M., and R. Fluhr, 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141: 336-340. Schaffitzel, E., S.Rudiger, B. Bukau, and E. Deuerling, 2001. Functional dissection of trigger factor and DnaK: interactions with nascent polypeptides and thermally denatured proteins. Biol. Chem. 382: 1235-1243. Singh-Gill, S., and N. Tuteja, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930. Sung, D. Y., E. Vierling, and C. L. Guy, 2001. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Am. Soc. Plant Biol. 126: 789-800. Srivastava, A., B. Guisse, H. Greppin, and R. J. Strasser, 1997. Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: B. B. A.- Bioenerg. 1320: 95-106. Takahashi, M. A., and K. Asada, 1983. Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch. Biochem. Biophys. 226: 558-566. Tang, B., S. Z. Xu, X. L. Zou, Y. L. Zheng, and F. Z. Qiu, 2010. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage. Agr. Sci. China 9: 651-661. Vervuren, P. J. A., C. W. P. M. Blom, and H. D. Kroon, 2003. Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. J. Ecol. 91: 135-146. Visser, E. J. W., L. A. C. J. Voesenek, B. B. Vartapetian, and M. B. Jackson, 2003. Flooding and plant growth. Ann. Bot. 91: 107-109. Volkov, R. A., I. I. Panchuk, P. M. Mullineaux, and F. Schoffl, 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61: 733-746. Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad, 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61: 199-223. Waters, E. R., G. J. Lee, and E. Vierling, 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47: 325-338. Weaich, K., K. L. Bristow, and A. Cass, 1996. Modeling preemergent maize shoot growth: II. High temperature stress conditions. Agron. J. 88: 398-403. Wehmeyer, N., L. D. Hernandez, R. R. Finkelstein, and E. Vierling, 1996. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Am. Soc. Plant Biol. 112: 747-757. Willekens, H., D. Inze, M. V. Montagu, and W. V. Camp, 1995. Catalases in plants. Mol. Breed. 1: 207-228. Xu, K., X. Xu, T. Fukao, P. Canlas, R. Maghirang-Rodriguez, S. Heuer, A. M. Ismail, J. Bailey-Serres, P. C. Ronald, and D. J. Mackill, 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705-708. Yang, J., Y. Sun, A. Sun, S. Yi, J. Qin, M. Li, and J. Liu, 2006. The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. Plant Mol. Biol. 62: 385-395. Yoshida, S., D. A. Forno, J. H. Cook, and K. A. Gomez, 1976. Routine procedure for growing rice plants in culture solution. Laboratory Manual for Physiological Studies of Rice. 460: 61-66. Zhang, J. H., and X. P. Zhang, 1994. Can early wilting of old leaves account for much of the ABA accumulation in flooded pea plants? J. Exp. Bot. 45: 1335-1342. Zhang, M., M. Windheim, S. M. Roe, M. Peggie, P. Cohen, C. Prodromou, and L. H. Pearl, 2005. Chaperoned ubiquitylation - crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20: 525–538.
摘要: 
因應全球氣候變遷造成極端氣候,環境逆境對水稻之影響更需深入研究。目前研究顯示,當水稻遭遇淹水時具兩種適應機制,分別為低地稻FR13A採取之靜默策略 (quiescence strategy)及深水稻採取之逃脫策略 (escape strategy)。然而陸稻 (upland rice)於淹水逆境之研究相當有限且其於淹水下之機制亦未闡明,因此本研究利用陸稻品種東陸3號 (Tung Lu 3, TL3)進行完全淹水試驗,觀測其生理及分子變化。研究結果顯示,TL3於淹水後植株高度及葉鞘間距離快速增加,顯示TL3於淹水逆境下採取逃脫策略。植株存活率試驗結果顯示,TL3於淹水10天後仍有55%之植株存活率。葉綠素a, b或總葉綠素含量之測量結果顯示,TL3第2葉之葉綠素含量於淹水處理下皆較FR13A多,而第3葉則較FR13A少。TL3於淹水後第2葉之過氧化氫累積情形較FR13A輕微,進一步檢測淹水下之抗氧化相關酵素活性發現,於回復正常生長條件1天後TL3之過氧化酶 (POX)活性與FR13A相比有明顯之上升。TL3於淹水下缺氧相關基因SUS1及ADH1皆有明顯之表現量,顯示其淹水耐受性雖不如FR13A好,但於短期淹水下仍具有一定之耐受性。高溫 (日夜溫40℃)處理下TL3及FR13A株高生長受到抑制,皆較控制組低。葉綠素a, b及總葉綠素含量測定結果顯示,TL3第2葉於高溫下葉綠素含量下降情況較輕微,DAB染色結果呈現TL3第2葉過氧化氫累積之累積較FR13A少。綜合以上結果顯示,於淹水逆境下雖然TL3之存活率較耐淹水稻FR13A低,但其第2葉於淹水下之葉綠素a, b及總葉綠素下降速率較FR13A慢、過氧化氫累積量較少、恢復正常生長環境下之過氧化酶活性也較高。高溫逆境下TL3之葉綠素含量較FR13A高且具較高之高溫耐受性。另外,TL3之HSP58.7、HSP50.2及HSP17基因於非高溫下之表現量皆較FR13A高,闡明陸稻 (東陸3號)無論是在淹水或高溫逆境下皆具有一定之耐受性。

Understanding the responses of rice to environmental stress is more important due to global climate change increasing severity of extreme weather. During rice under submergence, a quiescence strategy based on lowland rice or an escape strategy based on deepwater rice are used for the growth controls. However, little is known about the response of upland rice during submergence stress. Here, we used the upland rice (Tung Lu 3, TL3) to analysis the effect on physiological and molecular during sub- mergence stress. The plant heights and the distance between leaf sheaths of TL3 were increased rapidly under submergence stress which were displayed an escape strategy. Analysis of survival rate was showed that 55% of TL3 seedlings were revealed alive after submergence for 10 days. The contents of chlorophyll a, b and total chlorophyll in TL3 2nd leaf were significantly higher than FR13A. The accumulation of H2O2 in TL3 2nd leaf was lower than FR13A, and the peroxidase activity in TL3 was higher than FR13A after recovered 1 day from submergence treatment. The qRT-PCR analysis presented that the expression levels of ADH1 and SUS1 were induced after submergence treatment in TL3. Under heat stress, both of TL3 and FR13A were revealed lower plant height compare with control. The contents of chlorophyll a, b and total chlorophyll in TL3 2nd leaf are higher than FR13A under heat stress. The DAB (3 3'- diaminobenzidine) staining showed that the accumulation of H2O2 in TL3 2nd leaf is lower than FR13A. Taken together, under submergence, although the TL3 seedlings were presented lower survival rate compared with FR13A, TL3 were maintains higher chlorophyll contents in 2nd leaf, lower accumulation of H2O2, and higher peroxidase activity after recovered 1 day from submergence treatment. Under heat stress, the TL3 were revealed higher chlorophyll contents and heat tolerance compare with FR13A. The expression levels of HSP58.7, HSP50.2 and HSP17 in TL3 were presented higher than FR13A under control condition. In this study, we have presented the characterization of TL3 under submergence and heat stress.
URI: http://hdl.handle.net/11455/89500
其他識別: U0005-2808201517023600
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-31起公開。
Appears in Collections:農藝學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101031210-1.pdf2.12 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.