Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89507
標題: 利用秈稉稻雜交導入白葉枯病抗性基因至台稉9號水稻品種並進行農藝性狀之遺傳分析
Introgression of Xa genes into TK9 rice variety by using indica-japonica hybridization and study on the inheritance of agronomic traits
作者: Yu-Tien Huang
黃于恬
關鍵字: Xanthomonas oryzae pv. oryzae;白葉枯病
引用: 許志聖、宋勳。1995。稉稻新品種-台稉9號。台中區農業專訊第五期。 湯文通、高景輝。1972 溫度對水稻生育之影響。中華農學會報。77:16─25。 曾雅君。2012。運用標誌輔助選拔堆疊白葉枯病抗性基因至水稻台稉九號品種。國立中興大學碩士論文。PP.154.台灣台中市。2012, July。 盧守耕、孔德諟。1963。稉秈稻雜種後代稔實率及若干農藝性狀個體選拔效果之研究。國家農學會報。42:1─4。 盧守耕。1961。現代作物育種學國立臺灣大學農學院叢書第十號。 Abenes M.L.P., E. R. Angeles, G. S. Khush, N. Huang. 1993. Selection of bacterial blight resistant rice plants in the F2 generation via their linkage to molecular markers. Rice Genet Newsl. 10:120-123. Agarwal, P. K., G. S. Sidu, and S. S. Gosal. 2005. Induction of bacterial blight resistance in elite Indian Rice (Oryza Sativa L.) cultivars using gamma rrradiation and ethylmethane sulfonate. Mutat. Breed. Newsl. Rev. 1:17-18. Anon. 2010. How to feed a hungry world. Nature 466:531-532. Akerman, A., and J. Mackey. 1948. The breeding of self-fertilised crops by crossing Svalof 1886–1946. 46–71 (Lund). Bai, J., S.-H. Choi, G. Ponciano, H. Leung, and J. E. Leach, 2000. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol. Plant-Microbe Interact. 13:1322-1329. Bhasin, H., D. Bhatia, S. Raghuvanshi, J. S. Lore, G. K. Sahi, B. Kaur, Y. Vikal, and K. Singh. 2011. New PCR-based sequence-tagged site marker for bacterial blight resistance gene Xa38 of rice. Mol Breed. 30(1):607–611 Baker, P.B., Zambryski, B. Staskawicz, S. P. Dinesh-Kumar. 1997. Signaling in plant-microbe interactions. Science. 276:726–733. Bateman, A., L. Coin, R. Durbin, R. D. Finn, V. Hollich, S. Griffiths-Jones, A. Khanna, M. Marshall, S. Moxon, E. L. Sonnhammer. 2004. The Pfam protein families database. Nucleic Acids Res. 32:138–141. Beckman, J.S., and M. Soller. 1986. Restriction fragment length polymorphism in plant genetic improvement of agricultural species. Euphytica. 35: 111-124. Blair, M. W., and S. R. McCouch. 1997. Microsatellite and sequence-tagged site markers diagnostic for the rice bacterial blight resistance gene xa5. Theor. Appl. Genet. 95:174-184. Blair, M. W., A. J. Garris, A. S. Iyer, B. Chapman, S. Kresovich, and S. R. McCouch. 2003. High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice ( Oryza sativa L.). Theor. Appl. Genet. 107:62-73. Boerma, H.R., and R. L. Cooper. 1975. Comparison of three selection multiplied by the total number of lines selected for addi- procedures for yield in soybeans. Crop Sci. 15: 225–229. Bollar, T., and G. Felix. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol. 60: 379-406. Bonas, U., R. E. Stall, and B. J. Staskawicz, 1989. Genetic and structural Briggs, K. G. and L. H. Shebeski. 1971. Early generation selection for yield and breedmking guality of hard red spring wheat. Euphytica. 20:453-463. Brondani, C., P. H. N. Rangel, R.P. V. Brondani, and M.E. Ferreira. 2002. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet. 104:1192–1203. Brown J., and P. Caligari. 2008. An introduction to plant breeding. Blackwell Publishing Ltd. Oxford. UK. Busto GA., T.Ogawa, N. Endo, R. E. Tabien,and R. Ikeda. 1990. Distribution of genes for resistance to bacterial blight of rice in Asian countries. Rice Genet Newsl. 7 : 127-128. campestris pv. vesicatoria. Mol. Gen. Genet. 218:127-136. Chamberlain, J. S., R. A. Gibbs, J. E. Ranier, P. N. Nguyen, and C. T. Caskey. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res.16:11141-11156. Chang, S. Y., J. M. Cho, D. B. Kim, H. J. Jang, S. H. Ko, Y. H. Jo, and M. J. Kim. 2011. Molecular mechanisms of early growth response protein-1 (EGR-1) expression by quercetin in INS-1 beta-cells. J. Cell Biochem. 133:1559-1568. Cheema, K. K., N. K. Grewal, Y. Vikal, R. Sharma, and J. S. Lore. 2008. A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4L and transferred to Oryza sativa L. Genet Res. 90: 397–407. Chen, S., Z. Huang, L. Zeng, J. Yang, Q. Liu, and X. Zhu. 2008. High-resolution mapping and gene prediction of Xanthomonas Oryzae pv. Oryzae resistance gene Xa7. Mol. Breed. 22:433–441. Chen, X., M. Chern, P. E. Canlas, C. Jiang, D. Ruan, P. Cao, and P. C. Ronald. 2010a. A conserved threonine residue in the juxta membrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity. J. Biol. Chem. 285:10454-10463. Chen, X., M. Chern, P. E. Canlas, D. Ruan, C. Jiang, and P. C. Ronald. 2010b. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc. Natl. Acad. Sci. U. S. A. 107:8029-8034. Chu, Z., B. Fu, H. Yang, C. Xu, Z. Li, A. Sanchez, Y. J. Park, J. L. Bennetzen, Q. Zhang, and S. Wang. 2006. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor. Appl. Genet. 112:455-461. Chu, Z., M. Yuan, J. Yao, X. Ge, B. Yuan, C. Xu, X. Li, B. Fu, Z. Li, J. L. Bennetzen, Q. Zhang and S. Wang. 2010. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 20: 1250-1255. Churchill G.A., and R.W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics. 138:963-71. Collard, B. C. Y., M. Z. Z. Jahufer, J. B. Brouwer, and E. C. K. Pang. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica. 142:169-196. da Silva, F. G., Y. Shen, C. Dardick, S. Burdman, R. Yadav, P. Sharma, and P. Ronald. 2004a. Components of a type I secretion system and a sulfotransferase-like protein are required for the Xa21 receptor kinase mediated defense response. Mol. Plant-Microbe Interac. 17:593-601. da Silva, F. G., Y. Shen, C. Dardick, S. Burdman, R. C. Yadav, A. L. de Leon, and P. C. Ronald. 2004b. Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol. Plant-Microbe Interact. 17:593-601. Dardick, C., and P. Ronald. 2006. Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathogens 2:e2. Edwards, M. and L. Johnson. 1994. RFLPs for rapid recurrent selection. Proc. Symp. Analysis of Molecular Marker Data. 33–40. Esch, E., and E. Weber. 2002. Investigation of crossover interference in barley ( Hordeum vulgare L.) using the coefficient of coincidence. Theor. Appl. Genet. 104:786-796. Fang P., and P. Wu 2001.QTL× N-level interaction for plant height in rice (Oriza sativa L.). Plant and Soil. 236:237-242. Flor, H. H. 1971. Current status of the gene-for-gene concept. Ann. Rev. Phytopathol. 9:275-296. Francia, E., G.Tacconi, C. Crosatti, D. Barabaschi, D. Bulgarelli, E. Dall'Aglio, and G. Vale. 2005. Marker assisted selection in crop plants. Plant Cell Tissue Org. 82:317–342. Garris, A. J., S. R. McCouch, and S. Kresovich. 2003. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics. 165:759-769. Gnanamanickam S.S., V. Pryiyadarasani, N. N. Narayanan, P. Vasudevan, and Kavitha. 1999. An overview of bacterial blight disease of rice and strategies for management. Curr Sci. 77:1435–1444. Gu, K., B. Yang, D. Tian, L. Wu, D. Wang, C. Sreekala, F. Yang, Z. Chu, G. L. Wang, F. F. White, and Z. Yin. 2005. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122-1125. Guimaraes E. P. 2009. Rice breeding. Springer. 99-126 Haley C.S., and S.A. Knott. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. heredity. 69:315-324. Herbers, K., J. Conrads-Strauch, and U. Bonas. 1992. Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature. 356:172-174. Herbert, D., and J. Pinsent. 1948. Crystalline bacterial catalase. Biochem. J. 43: 193-202. Hittalmani, S., M. Foolad, T. Mew, R. Rodrigues, and N. Huang. 1994. Identification of blast resistance gene, Pi-2(t) in rice plants by flanking DNA markers. Rice Genet Newsl. 11 :144-146. Holleley, C. E., and P. G. Geerts. 2009. Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511-517. Hopkins, C. G. 1899. Improvement in the chemical compositionof the corn kernel. Illinois Agr. Expt. Sta. Bul. 55: 205-240. Hopkins, C. M., F. F. White , S. H. Choi, A. Guo, and J. E. Leach, 1992. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 5: 451-459. Huang, N., B. Courtois, G. S. Khush, H. X. Lin, G. L. Wang, P. Wu, and Zheng K.L. 1996. Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity. 77:130-137. Huang, N., E. R. Angeles, J. Domingo, G. Magpantay, S. Singh, G. Zhang, N. Kumaravadivel, J. Bennett, and G. S. Khush. 1997. Pyramiding bacterial blight resistance genes in rice: Marker assisted selection using RFLP and PCR. Theor. Appl. Genet. 95:313–320. Iyer, A. S., and S. R. McCouch. 2007. Functional markers for xa5-mediated resistance in rice(Oryza sativa, L.). Mol. Breed. 19:291–296. Jiang, G. H., Z. H. Xia, Y. L. Zhou, J. Wan, D. Y. Li, R. S. Chen, W. X. Zhai, and L. H. Zhu. 2006. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIA gamma1. Mol. Genet. Genomics 275:354-366. Johnson, H. W., H. F. Robinson, and R. E. Comstock, 1955. Estimates of genetic and environmental variability in soybean. Agron. J. 47 : 314-318. Johnson, R. A., and D. W. Wichern. 2007. Applied Multivariate Statistical Analysis (6thed.). Pearson International Edition. Jones, N., H. Ougham, and H. Thomas. 1997. Markers and mapping: we are all geneticists now. New Phytol. 137:165-177. Jones, J., and J. L. Dangl. 2006. The plant immune system. Nature. 444: 323-733. Kauffman, H. E., A. P. K. Reddy, S. P. Y. Hsieh, and S. D. Merca. 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas Oryzae. Plant Dis. Reptr. 57:537-541. Kearsey, MJ., and AG. L. Farquhar. 1998. QTL analysis in plants; where are we now? Nature. 80: 137–142 Khan MA., M. Naeem, and Iqbal M. 2014. Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. Eur J Plant Pathol. 139:27-37. Khush, G. S., D. J. Mackill, and G. S. Sidhu. 1989. Breeding rice for resistance to bacterial leaf blight. In: IRRI (eds) Bacterial blight of rice. IRRI, Manila, Philippines, pp 207-217. Khush, G.S. 2005. What it will take to feed 5.0 billion rice consumers by 2030. Plant Mol. Biol. 59:1–6. Kiran, K. K., M. R. G. Rao, M. P. Rajanna, A. Rao, M. P. Mahadevu, and D. K. Siddegowda. 2012. Variability, heritability and genetic advance studies in F2 populations of two crosses of rice (Oryza sativa L.). Mysore J. Agric, Sci. 46 (4) : 917-919. Knott, D. R., and J. Kumar. 1975. Comparison of early generation yield test and a single seed descent procedure in wheat breeding. Crop Science, 15: 295-299. Koebner, R. M. 2004. Marker assisted selection in the cereals: The dream and the reality. In P.K. Gupta and R.K. Varshney (ed.) Cereal genomics. Kluwer Academic, Dordrecht, the Netherlands:317-329. Lande, R., and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743-756. Lander, E. S., and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 121: 185–199. Leach, J. E., and F. F. White. 1996. Bacterial avirulence genes. Annu Rev Phytopathol. 34:153-179. Lee, S.W., S. W. Han, L. E. Bartley and P. C. Ronald. 2006. From the academy: colloquium review. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA. 103: 18395–18400. Lee, S. W., S. W. Han, M. Sririyanum, C. J. Park, Y. S. Seo, and P. C. Ronald. 2009. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850-853. Lee, S. W., M. Han, C. J. Park, Y. S. Seo, L. E. Bartley, and J. S. Jeon. 2011. The molecular mechanisms of rice resistance to the bacterial blight pathogen, Xanthomonas oryzae pathovar oryzae. Bot. Res. 60:52-87. Leng, ER. 1954. Effects of heterosis on the major components of grain yield in corn. Agron. J. 46:502-506. Li, Z. K., L. J. Luo, H. W. Mei, A. H. Paterson, X. H. Zhao, D. B. Zhong, Y. P. Wang, X. Q. Yu, L. Zhu, R. Tabien, J. W. Stansel, and C. S. Ying. 1999. A 'defeated' rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol. Gen. Genet. 261:58-63. Liu, G.Z., L.Y. Pi, J.C. Walker, P.C. Ronald, and W.Y. Song. 2002. Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.J Biol Chem. 277: 20264–20269. Mackill, D. J., and J. Ni. 2000. Molecular mapping and marker assisted selection for major-gene traits in rice. Proc. Fourth Int. Rice Genetics Symp. 137-151. Los Banos. Mather, K. 1949. Biometrical Genetics, London, Methuen and Co. Matthew, J. H., M. N. Thao, W. Amanda, and J. C. Kenneth. 2008. Multiplex-ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC Genomics 9:80-91. McCouch, S. R., L. Teytelman, Y. Xu, K. B. Lobos, K. Clare, M. Walton, B. Fu, R. Maghirang, Z. Li, Y. Xing, Q. Zhang, I. Kono, M. Yano, R. Fjellstrom, G. DeClerck, D. Schneider, S. Cartinhour, D. Ware, and L. Stein. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9:199-207. Mew, T. W. 1987. Current status and future prospects of research on bacterial blight of rice. Annu. Rev. Phytopathol. 25:359-382. Mew, T. W., A. M. Alvarez, J. E. Leach, and J. Swings. 1993. Focus on bacterial blightof rice. Plant Dis. 77: 5-12. Miller, P. A., and A, Marani. 1963. Heterosis and combining ability in diallel crosses of upland cotton Gossypium hirsutum L. Crop Sci. 3:441-444. Mohan, M., S. Nair, A. Bhagwat, T. G. Krishna, M. Yano, C. R. Bhatia, and T. Sasaki. 1997. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol. Breed. 3:87-103. Mohler, V., and C. Singrun. 2004. General considerations: Markerassisted selection. Springer. 55: 305–318. Muralidharan, K., amd Venkatarao, G. 1979. Bacterial blight (Xanthomonas campestris pv oryzae) on rice in Nellore district, Andhra Pradesh, India. Indian Phytopathology. 32: 483- 485. Natrajkumar, P., K. Sujatha, G. S. Laha, K. Srinivasarao, B. Mishra, B. C. Viraktamath, Y. Hari, C. S. Reddy, S. M. Balachandran, T. Ram, M. Sheshumadhav, N. Shobharani, C. N. Neeraja, G. Ashokreddy, H. Shaik, and R. M. Sundaram. 2012. Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae. Phytopathology. 102:222–228 Nino-Liu, D.O., P.C. Ronald, A. Bogdanove. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol. 7: 303-324. Noh, T. H., D. K. Lee, J. C. Park, H. K. Shim, M. Y. Choi, M. H. Kang, J. D. Kim. 2007. Effect of bacterial leaf blight occurrence on rice yield and grain quality in different rice growth stage. Res Plant Dis. 13:20–23 Nuruzzaman, M., M. F. Alam, M. G. Ahmed, A. M. Shohael, M. K. Biswas, M. R. Amin, and M. M. Hossain. 2002. Studies on parental variability and heterosis in rice. Pakistan J. Biol. Sci. 5(10): 1006-1009. Nguyen, N. V. and A. Ferrero. 2006. Meeting the challenges of global rice production. Paddy Water Environ. 4:1-6. Ogawa, T., L. Lin, RE. Tabien, and GS. Khush. 1987. A new recessive gene for resistance to bacterial blight of rice. Rice Genet Newslett. 4:98-100. Ogawa, T., T. Yamamoto, G. S. Khush, T. W. Mew, and H. Kaku. 1991. Near-isogenic lines as international differentials for resistance to bacterial blight of rice. Rice Genetics Newsl. 5:106-109. Openshaw, S. J., S. G. Jarboe, and W. D. Beavis. 1994. Markerassisted selection in backcross breeding. In: R. Lower (ed.), ASHS/CSSA Joint Plant Breeding Symposium on Analysis of Molecular Marker Data, 41-43. Oregon State University, Corvallis, OR. Ou, S. H. 1973. A handbook of rice diseases in the tropics. International Rice Research Institute, Los Banos. Oladi, M., and A. Bagheri. 2014. Heritability and heterosis of agronomic traits in rice Lines. Intl J Farm & Alli Sci. 3(1):66 -70. Pandey, M. K., N. Shobha Rani, R. M. Sundaram, G. S. Laha, M. S. Madhav, K. Srinivasa Rao, I. Sudharshan, Y. Hari, G. S. Varaprasad, L. V. Subba Rao, K. Suneetha, A. K. P. Sivaranjani, and B. C. Viraktamath, 2013. Improvement of two traditional Basmati rice varieties for bacterial blight resistance and plant stature through morphological and marker-assisted selection. Mol. Breed. 31: 239-246. Park, C. J., S. W. Han, X. Chen, and P. C. Ronald. 2010b. Elucidation of XA21-mediated innate immunity. Cell Microbiol. 12:1017-1025. Park, C-J. and P. C. Ronald. 2012. Cleavage and nuclear localization of the rice XA21 immune receptor. Nature communications. Nature. 3: 920. Peng, Y., L. E. Bartley, X. Chen, C. Dardick, M. Chern, R. Ruan, P. E. Canlas, and P. C. Ronald. 2008. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol. Plant. 1:446-458. Peng, Y., L. E. Bartley, P. Canlas, and P. C. Ronald. 2010. OsWRKY IIa Transcription Factors Modulate Rice Innate Immunity. Rice (N. Y.) 3:36-42. G. Ponciano, K. W. Webb, J. F. Bai, C. M. Vera Cruz, and J. E. Leach. 2004. Molecular characterization of the avrXa7 locus from Xanthomonas oryzae pv.oryzae field isolates. Physiol Mol Plant Pathol. 64: 145–153. Porter, B., J. Chittoor, M. Yano, T. Sasaki, and F. F. White. 2003. Development and mapping of markers linked to the rice bacterial blight resistance gene Xa7. Crop Sci. 43:1484-1492. Price, A. H. 2006. Believe it or not, QTLs are accurate! Trends Plant Sci. 11: 213–216. Ribaut, J. M. and D. Hoisington. 1998. Marker-assisted selection : New tools and strategies. Trends Plant Sci. 3:236-239. Romer, P., S. Fecht, T. Straub, J. Elsasser, S. Schornack, J. Boch, S. Wang, and T. Lahaye. 2010. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytologist. 187: 1048–1057. Sidhu, G. S., G. S. Khush, and T. W. Mew. 1978. Genetic analysis of bacterial blight resistance in seventy-four cultivars of rice, Oryza sativa L. Theor. Appl. Genet. 53:105-111. Singh, S., J. S. Sidhu, N. Huang, Y. Vikal, Z. .Li, D. S. Brar, H. S. Dhaliwal, and G. S. Khush. 2001. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor. Appl. Genet. 102:1011–1015. Song, W., G. Wang, L. Chen, H. Kim, L. Pi, T. Holsten, J. Gardner, B. Wang, W. Zhai, L. Zhu, C. Fauquet, and P. Ronald. 1995. A receptor kinaselike protein encoded by the rice disease resistance gene, Xa21. Science 270:1804-1806. Song X. J., W. Huang, M. Shi, M.Z. Zhu, H.X. Lin. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics. 39:623-630. Srivastava, D. N., and Rao, Y. P. 1963. Seed transmission and epidemiology of the bacterial leaf blight disease of rice in north India. Indian Phytopathology. 14: 77-78. Su, H., W. B. Lau, and X. L. Ma. 2011. Hypoadiponectinaemia in diabetes mellitus type 2: molecular mechanisms and clinical significance. Clin. Exp. Pharmacol. Physiol. 38:897-904. Sun, X., Z. Yang, S. Wang, and Q. Zhang. 2003. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor. Appl. Genet. 106:683-687. Sun, X., Y. Cao, Z. Yang, C. Xu, X. Li, S. Wang, and Q. Zhang. 2004. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 37:517-527. Szurek, B., E. Earois, U. Bonas, and A. G. Van Den. 2001. Eukaryotic features of the Xanthomonas type III effector AvrBs3: Protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J. 26: 523-534. Tagami, Y., and Mizukami, T. 1962. Historical review of the researches on bacterial leaf blight of rice caused by Xanthomonas. Special Report on Plant Disease and Insect Pest Forecasting Service, Ministry of Agriculture, Japan. 10: 1-112. Tanksley, S. D. 1983. Molecular markers in plant breeding. Plant Mol. Biol. Rep. 1: 3-8. Temnykh, S, W. D. Park, N. Ayers, S .Cartinhour, N. Hauck, L. Lipovich, Y. G. Cho, T. Ishii, S. R. McCouch. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100:697-712. Temnykh, S., G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour, and S. McCouch. 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441-1452. Thseng, F.S., S. Hosokawa. 1972. Significance of growth habit in soybean breeding.ⅡHeritability and genotypic correlation in F2 generations of crosses between indeterminate and determinate types of varieties. Japan J. Breed. 22:285-290. Tian, D. and Z. Yin. 2009. Constitutive heterologous expression of avrXa27 in rice containing the R gene Xa27 confers enhanced resistance to compatible Xanthomonas oryzae strains. Mol Plant Pathol. 10:29–39. Tsuda, K., and F. Katagiri. 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13:459-465. Vera Cruz, C. M., J. F. Bai, I. Ona, H. Leung, R. J. Nelson, T. W. Mew, and J. E. Leach. 2000. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. PNAS. 97:13500-13505. Wang, G. L., D. L. Ruan, W. Y. Song, S. Sideris, L. Chen, L. Y. Pi, S. Zhang, Z. Zhang, C. Fauquet, B. S. Gaut, M. C. Whalen, and P. C. Ronald. 1998. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10:765-779. Wang, Y. S., L. Y. Pi, X. Chen, P. K. Chakrabarty, J. Jiang, A. L. De Leon, G. Z. Liu, L. Li, U. Benny, J. Oard, P. C. Ronald, and W. Y. Song. 2006. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18:3635-3646. Webb,K., M. I. Ona, J. Bai, K. A. Garrett, T. Mew, C. M. Vera Cruz2 and J. E. Leach. 2010. A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytologist. 185:568–76. Weng J., Gu S., Wan X., Gao H., Guo T., Su N., Lei C., Zhang X., Cheng Z., Guo X., Wang J., L. Jiang, H. Zhai, J. Wan. 2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18:1199-1209. White, F. F., Yang, B., and Johnson, L. B. 2000. Prospects for understanding avirulence gene function. Curr. Opin. Plant Biol. 3:291-298. Win, K. M., S. Korinsak. J. Jantaboon, M. Siangliw, J. Lanceras Siangliw, and P. Sirithunya, 2012. Breeding the Thai jasmine rice variety KDML105 for non-age-related broadspectrum resistance to bacterial blight disease based on combined marker-assisted and phenotypic selection. Field Crops Research. 137:186–194. Winter, P., and G. Kahl. 1995. Molecular Marker Technologies for Plant Improvement. World J. Microb. Biot. 11: 438-448. Xu, Y. 2002. Global view of QTL: Rice as a model. In M.S. Kang (ed.) Quantitative genetics, genomics, and plant breeding. CABI Publishing, Wallingford, U. K.:109-134. Xu, Y. 2003. Developing marker-assisted selection strategies for breeding hybrid ric. Plant Breed. Rev. 23:73-174. Xu, Y., S. R. McCouch, and Q. Zhang. 2005. How can we use genomics to improve cereals with rice as a reference genome? Plant Mol. Biol. 59:7-26. Xu, W.H., Y.S. Wang, G. Z.Liu, X. Chen, P. Tinjuangjun, L.Y. Pi, and Song, W.Y. 2006a. The autophosphorylated Ser686, Thr688, and Ser689 residues in the intracellular juxtamembrane domain of XA21 are implicated in stability control of rice receptor-like kinase. Plant J 45:740–751. Xu, X., C. Chen, B. Fan, and Z. Chen, 2006b. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell. 18: 1310–1326. Xu, Y., and J. H. Crouch. 2008. Marker-assisted selection in plant breeding: from publications to practice. Crop. Sci. 48:391–407. Yang, Y., R. De Feyter, and D. W. Gabriel. 1994. Host-specific symptoms and increased release of Xanthomonas citri and X. campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively. Mol. Plant-Microbe Interact. 7:345-355. Yang, D., A. Sanchez, and G. S. Khush. 1998. Construction of a BAC contig containing the Xa5 locus in rice, Theor. Aappl. Genet. 97: 1120-1124. Yang, B., W. Zhu, L. B. Johnson, and F. F. White. 2000. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent, nuclear-localized, double-stranded DNA binding protein. Proc. Natl. Acad. Sci. U.S.A. 97:9807-9812. Yang, B., and F. F. White. 2004. Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol. Plant-Microbe Interact. 17:1192-1200. Yoshimura, S., A. Yoshimura, N. Iwata, S. R. McCouch, M. L. Abenes, M. R. Baraoidan, T. W. Mew, and R. J. Nelson. 1995. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol. Breed. 1:375-387. Yoshimura, S., U. Yamanouchi, Y. Katayose, S. Toki, Z. X. Wang, I. Kono, N. Kurata, M. Yano, N. Iwata, and T. Sasaki. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. U. S. A. 95:1663-1668. Young, N. D. and S. D. Tanksley. 1989. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor. Appl. Genet. 77:95-101. Yuan, M., Z. Chu, X. Li, C. Xu, and S. Wang. 2009. Pathogeninduced expressional loss of function is the key factor in race-specific bacterial resistance conferred by a recessive R gene xa13 in rice. Plant Cell Physiol. 50: 947–955 Yuan, M., Z. Chu, X. Li, C. Xu, and S. Wang. 2010. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22:3164-3176. Zeng, Z. B. 1994. Precision mapping of quantitative trait loci. Genetics. 136: 1457-1468. Zhang, G., E. R. Angeles, M. L. P. Abenes, G. S. Khush and N. Huang.1996. RAPD and RFLP mapping of the bacterial blight resistance gene xa13 in rice. Theor Appl Genet. 93:65–70. Zou, H., W. Zhao, X. Zhang, Y. Han, L. Zou, and G. Chen. 2010. Identification of an avirulence gene, avrxa5, from the rice pathogen Xanthomonas oryzae pv. oryzae. Sci. China Life Sci. 53:1440-1449.
摘要: 
白葉枯病(bacteria blight disease, BBD)是亞洲種植水稻地區的重大病害之一,嚴重影響水稻的產量,目前以噴施藥劑的管理方式對白葉枯病的控制並無顯著效果。一般認為,將多個抗白葉枯病基因導入現有品種使產生廣幅抗性,是最經濟有效的策略。台稉9號(TK9)為台灣重要的良質米品種,其農藝性狀優良,但不抗白葉枯病。本論文將秈型稻IRBB66(Xa4+xa5+Xa7+xa13+Xa21)的5個抗病基因導入TK9,利用秈稉雜交子代性狀變異大之特性,選出優良子代,期能獲得農藝性狀佳並抗白葉枯病的新品系。為瞭解此雜交組合的子代基因型分離特性,先以10個與Xa基因連鎖的SSR分子標誌,偵測1500株F2的基因型,並計算不同Xa基因的導入率,發現F2的基因型組合呈明顯分離,且堆疊基因數越多,株數越少。進一步估計獲得不同基因型所需之最小種植株數,發現若在90%的信賴區間下,至少獲得一株含5同質Xa基因的F2,至少須種植1628株。接著分析TK9/IRBB66雜交組合的雜種優勢與遺傳力,結果顯示此雜交組合的株高、分蘗數、抽穗期及產量性狀皆具雜種優勢,且這些性狀的遺傳力高於0.9。由於F2的農藝性狀呈明顯分離,需把握早期分離世代,選出農藝性狀優良的品系進行育種。本論文亦比較單粒後裔法與譜系法進行F2- F4的育種,並以株高、分蘗數、莖稈角度、抽穗期、病斑長度及穀粒長寬比為篩選條件,結果證明透過譜系法育種可選出農藝性狀優良子代,單粒後裔法育種則可維持子代性狀的變異,再從這二種方法挑選性狀優秀之子代,期能育出兼具白葉枯病抗性和優良農藝性狀的新品種。

Bacterial blight disease (BBD) is a widespread and destructive disease of rice in irrigated and rainfed environments in Asia. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease. The disease can cause 30 to 50% yield loss severely. Chemical management isn't useful to defect bacterial blight, and it's with higher spending. Generally believed that impoting the multiple Xa genes into varieties to produce the broad resistance, so that is the most effective strategy with economic values. TK9 is one of the most popular japonica type rice varieties in Taiwan because of its good plant type, stable yield and excellent grain quality. But it is suscepitible to bacterial blight disease. In this study, markers assisted selection (MAS) strategy was conducted to introgress Xa genes into TK9 to improve its BBD resistance. We chose indica variety, IRBB66 (Xa4, xa5, Xa7, xa13 and Xa21), to be the resistance doner parent. We investigated by taking F2 population with a view to assess the variability, heritability and genetic parameters. We found heritability of lots of traits are high. So we can select plants with excellent traits in early stage. Because the polymorphism traits between TK9 and IRBB66 are height, tiller, heading date, grain length, grain width and yield traits. They are better traits to map genes. So we chose 102 SSR markers averaging in 12 rice chromosomes to analyse 92 F2 . We found one QTL (qHeight-1)controlling height on chromosom 1, one QTL (qhd-1) controlling heading date on chromosome 8, and one QTL (qGL-1). We took 1500 F2 plants to analysis introgressing probabilities and its genetic characteristics in the TK9/IRBB66 population. By using 10 markers linked to Xa genes to select various genotypes, we took 1500 F2 plants to analysis introgressing probabilities and its genetic characteristics in the TK9/IRBB66 population.We found that actual probabities are lower than expected probabilities. Because there are segregations of traits in TK9/IRBB66 population. We took pedigree and single seed descent method for breeding. We selected plants with height, tillers, plant ancle, heading date, lesion, grain shape, and yield traits. We can keep the segregations of the poulation with single seed descent method, and then can select excellent plants by using these two breeding methods. We hope to breed a new variety from pedigree and single seed descent methods.
URI: http://hdl.handle.net/11455/89507
其他識別: U0005-3101201510164100
Rights: 同意授權瀏覽/列印電子全文服務,2018-02-04起公開。
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101031104-1.pdf3.69 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.