Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89511
DC FieldValueLanguage
dc.contributor古新梅zh_TW
dc.contributor.authorChia-Wei Linen_US
dc.contributor.author林家偉zh_TW
dc.contributor.other農藝學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-07T08:45:31Z-
dc.identifierU0005-0302201522523300zh_TW
dc.identifier.citationBelenghi, B., F. Acconcia, M. Trovato, M. Perazzoli, A. Bocedi, F. Poticelli, P. Ascenzi, and M. Delledonne. 2003. Atcyssi, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270: 2593-2604. Birk, Y. 1996. Protein proteinase inhibitors in legume seeds-overview. Arch. Latinoam. Nutr. 44: 26-30. Chen, P., G. R. Buss, and S. A. Tolin. 1993. Resistance to soybean mosaic virus conferred by two independent dominant genes in PI 486355. J. Hered. 84: 25-28. Christeller, J. T. 2005. Evolutionary mechanisms acting on proteinase inhibitor variability. FEBS J. 272: 5710-5722. Connors, B. J., N. P. Laun, C. A. Maynard, and W. A. Powell. 2002. Molecular characterization of a gene encoding a cystatin expressed in the stems of American chestnut (Castanea dentata). Planta 215: 510-514. Davletova, S., L. Rizhsky, H. Liang, Z. Shengqiang, D. J. Oliver, J. Coutu, V. Shulaev, K. Schlauch, and R. Mittler. 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268-281. De Leo, F., M. Volpicella, F. Licciulli, S. Liuni, R. Gallerani, and L. R. Ceci. 2002. Plant-PIs: a database for plant protease inhibitors and their genes. Nucleic Acids Res. 30: 347-348. Desclos, M., L. Dubousset, P. Etienne, F. Le Caherec, H. Satoh, J. Bonnefoy, A. Ourry, and J. C. Avice. 2008. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions. Plant Physiol. 147: 1830-1844. Drame, K. N., C. Passaquet, A. Repellin, and Y. Zuily-Fodil. 2013. Cloning, characterization and differential expression of a Bowman-Birk inhibitor during progressive water deficit and subsequent recovery in peanut (Arachis hypogaea) leaves. J. Plant Physiol. 170: 225-229. Dunse, K. M., J. A. Stevens, F. T. Lay, Y. M. Gaspar, R. L. Heath, and M. A. Anderson. 2010. Coexpression of poatao type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc. Natl. Acad. Sci. U. S. A. 107: 15011-15015. Falco, M. C., and M. C. Silva-Filho. 2003. Expression of soybean proteinases inhibitor in transgenic sugarcane plants: effects on natural defense against Diatraea saccharalis. Plant Phisol. Biochem. 41: 761-766. Fourcroy, P., G. Vansuyt, S. Kushnir, D. Inze, and J. Briat. 2004. Ironregulated expression of a cytosolic ascorbate peroxidase encoded by the APX1 gene in Arabidopsis seedlings. Plant Physiol. 134: 605-613. Graham, J. S., and C.A. Ryan. 1981. Accumulation of a metallo-carboxypeptidase inhibitor in leaves of wounded potato plants. Biochem. Biophys. Res. Commun. 101: 1164-1170. Gutierrez-Campos, R., J. A. Torres-Acosta, L. J. Saucedo-Arias, and M. A. Gomez-Lim. 1999. The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat. Biotechnol. 17: 1223-1226. Habib, H., and K. M. Fazili. 2007. Plant protease inhibitors: a defense strategy in plants. Biotech. Mol. Biol. 2: 68-85. Haq, S. K., S. M. Atif, and R. H. Khan. 2004. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch. Biochem. Biophys. 43: 145-159. Huang, Y., B. Xiao, and L. Xiong. 2007. Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta 226: 73-85. Ivanov, D., C. Emonet, F. Foata, M. Affolter, M. Delly, M. Fisseha, S. BlumSperisen, S. Kochhar, and F. Arigoni. 2006. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase like serine proteases. J. Biol. Chem. 281: 17246-17252. Kidric, M., J. Kos, and J. Sabotic. 2014. Protease and their endogenous inhibitors in the plant response to abiotic stress. Botanica Serbic 38: 139-158. Koiwa, H., R. A. Bressan, and P. M. Hasegawa. 1997. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2: 379-384. Kuroda, M., T. Kiyosaki, I. Matsumoto, T. Misaka, S. Arai, and K. Abe. 2001. Molecular cloning, characterization and expression of wheat cystatins. Biosci. Biotechnol. Biochem. 65: 22-28. Laskowski, M, and I. Kato. 1980. Protein inhibitors of proteinases. Annu. Rev. Biochem. 49: 593-626. Lin, Y. T., F. J. Jan, C. W. Lin, C. H. Chung, J. C. Chen, S. D Yeh, and H. M. Ku. 2013 Differential gene expression in response to Papaya ringspot virus infection in Cucumis metuliferus using cDNA- amplified fragment length polymorphism analysis. PLoS One 8: e68749. doi: 10.1371/journal.pone.0068749. Macedoa, M. L. R., D. G. G. de Matos, O. L. T. Machado, S. Marangoni, and J. C. Novello. 2000. Trypsin inhibitor from Dimorphandra mollis seeds: purification and properties. Phytochem. 54: 553-558. Mares, M., B. Meloun, M. Pavlik, V. Kostka, and M. Baudys. 1989. Primary structure of cathepsin D inhibitor from potatoes and its structure relationship to soybean trypsin inhibitor family. FEBS Lett. 251: 94-98. Mello, G. C., M. L. V. Oliva, J. T. Sumikawa, O. L. T. Machado, S. Marangoni, J. C. Novello, and M. L. R. Macedo. 2001. Purification and Characterization of a New Trypsin Inhibitor from Dimorphandra mollis Seeds. J. Protein Chem. 20: 625-632. Melville, C. J., and C. A. Ryan. 1972. Chymotrypsin inhibitor I from potatoes: large scale preparation and characterization of its subunit components. J. Biol. Chem. 247: 3445-3453. Mickel, C. E., and J. Standish. 1947. Susceptibility of processed soy flour and soy grits in storage to attack by Tribolium castaneum (Herbst). Univ. Minn. Agric. Exp. Stn. Tech. Bull. 178: 1-20. Mosolov, V. V., and T. A. Valueva. 2005. Proteinase inhibitors and their function in plants: a review. Prikl. Biokhim. Mikrobiol. 41: 261-82. Ojima, A., H. Shiota, K. Higashi, H. Kamada, Y. I. Shimma, P. Wadamasata, and S. Satoh. 1997. An extracellular insoluble inhibitor of cysteine proteinases in cell cultures and seeds of carrot. Plant Mol. Biol. 34: 99-109. Provvidenti, R., and D. Gonsalves. 1982. Resistance to Papaya ringspot virus in Cucumis metuliferus and its relationship to resistance to Watermelon mosaic virus 1. J. Hered. 73:239-240. Rancour, J. M., and C. A. Ryan. 1968. Isolation of a carboxypeptidase B inhibitor from potatoes. Arch. Biochem. Biophys. 125: 380-382. Rawlings, N. D., D. P. Tolle, and A. J. Barrett. 2004. MEROPS: the peptidase database. Nucleic Acid Res. 32: 160-164. Ryan, C. A. 1973. Proteolytic enzymes and their inhibitors in plants. Annu. Rev. Plant Physiol. 24: 173-196. Ryan, C. A. 1990. Proteinase inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol. 28: 425-449. Sanchez-Hernandez, C., N. Martinez-Gallardo, A. Guerrero-Rangel, S. Valdes-Rodriguez, and J. Delano-Frier. 2004. Trypsin and alpha-amylase inhibitors are differentially induced in leaves of amaranth (Amaranthus hypochondriacus) in response to biotic and abiotic stress. Physiol. Plantarum 122: 254-264. Shan, L., C. L. Li, F. Chen, S. Y. Zhao, and G. M. Xia. 2008. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ. 31: 1128-1137. Sin, S. F., and M. L. Chye. 2004. Expression of proteinase inhibitor II proteins during floral development in Solanum americanum. Planta 219: 1010-1022. Sin, S. F., E. C. Yeung, and M. L. Chye. 2006. Downregulation of Solanum americanum genes encoding proteinase inhibitor II causes defective seed development. Plant J. 45: 58-70. Soares-Costa, A., L. M. Beltramini, O. H. Thiemann, and F. Henrique-Silva. 2002. A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem. Biophys. Res. Commun. 296: 1194-1199. Solomon, M., B. Belenghi, M. Delledonne, E. Menachem, and A. Levine. 1999. The involvement of cysteine protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11: 431-443. Srinivasan, T., K. R. Kumar, and P. B. Kirti. 2009. Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol. 50: 541-553. Sugawara, H., K. Shibuya, T. Yoshioka, T. Hashiba, and S. Satoh. 2002. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? J. Exp. Bot. 53: 407-413. Urwin, P. E., A. Levesley, M. J. McPherson, and H. J. Atkinson. 2000. Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Mol. Breed. 6: 257-264. Urwin, P. E., G. J. Lilley, M. J. McPherson, and H. J. Atkinson. 1997. Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J. 12: 455-461. Walker, A. J., P. E. Urwin, H. J. Atkinson, P. Brain, D. M. Glenn, and P. R. Shewry. 1999. Transgenic Arabidopsis leaf tissue expressing a modified oryzacystatin shows resistance to the field slug Deroceras reticulatum (Muller). Transgenic Res. 8: 95-103. Zhang, X. X., S. K. Liu, and T. Takano. 2008. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol. 68: 131-143.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/89511-
dc.description.abstract蛋白酶抑制子廣泛存在於生物體中,可降低或抑制蛋白酶的活性進而參與生理現象調控及抗逆境相關反應。本研究從刺角瓜 (Cucumis metuliferus) 中選殖出CmSPI基因可編碼出絲氨酸蛋白酶抑制子,屬於potato I type 蛋白酶家族。經序列分析發現CmSPI基因上游區域具有core abscisic acid response element、T/GBOXATPIN2 element以及wound response element,推測與逆境反應相關。為了瞭解CmSPI在植物中的功能性,因此在生物逆境方面,首先利用RNA interference (RNAi) 的方式靜默刺角瓜抗木瓜輪點病毒 (papaya ringspot virus, PRSV) 品系PI 292190之CmSPI基因表現。在CmSPI基因靜默刺角瓜品系H1和H2中發現,PRSV可突破植物的防禦機制並於接種病毒21天後開始產生病徵。此外,將刺角瓜CmSPI基因轉殖於圓葉菸草 (Nicotiana benthamiana) 中,得到的轉基因菸草品系F-21與F-51,對馬鈴薯病毒Y (potato virus Y, PVY ) 具有抗性。在非生物逆境方面發現,在鹽分逆境下,過表現CmSPI基因菸草品系Y1與Y2之種子發芽比率相較於未轉殖對照組可提高55.6-73.3%,而在Mannitol乾旱逆境處理下則可提高63-75%。此外在PEG乾旱逆境處理下,轉基因品系Y2之葉圓片總葉綠素含量相較於未轉殖對照組提高10%。綜言之,本研究證明CmSPI基因確實與刺角瓜抗PRSV之抗病反應相關,並可提供圓葉菸草對於PVY之抗性,同時CmSPI可增加圓葉菸草於鹽分及乾旱下的耐受性。本研究的結果將有助於瞭解刺角瓜CmSPI基因在生物及非生物逆境中的所扮演的腳色,在未來可進一步運用於作物抗病及環境逆境防治。zh_TW
dc.description.abstractProteinase inhibitors (PIs) is an ubiquitous protein involved in physiology reaction, biotic and abiotic stress defense responses via block the active center or allosteric interaction with specific proteinase. In this study, we cloned Cucumis metuliferus serine PI (CmSPI) gene, a potato I type PIs, from horned melon (C. metuliferus) papaya ringspot virus (PRSV) resistant line PI 292190. A core abscisic acid response element, a T/GBOXATPIN2 element, and a wound response element were identified on the promoter region of CmSPI indicating its role in plant stress responses. To identify CmSPI function, CmSPI RNA interference (RNAi) transgenic horned melon lines, H1 and H2 were generated, and showed broken down of the resistance after challenged with PRSV at 21 dpi. Transgenic tobacco (Nicotiana benthamiana) lines expressing a full length of CmSPI genomic fragment, F21 and F51, showed resistance to one of potyvirus, potato virus Y (PVY), but not Biden mottle virus (BiMoV) and Turnip mosaic virus (TuMV). In addition, CmSPI overexpression tobacco lines, Y1 and Y2, showed tolerance of salt and drought stresses. The germination rate of the two transgenic lines increased dramatically about 55.6% to 73.3% higher than wild type (WT) under NaCl salt stress and increase of 63% to 75% than WT under Mannitol drought stress. In addition, the chlorophyll content of leaf discs in transgenic lines, Y2, was 10% higher than WT under PEG drought stress. These results suggested that CmSPI can response to biotic and abiotic stresses. This study provided the evidence for a better understanding of CmSPI in interaction with pathogens and environment stresses. This can be applied to crop disease-resistance and stress-resistance breeding in the future.en_US
dc.description.tableofcontents目次/Contents 摘要 i Abstract ii 目次/Content iii 表目次/Contents of table vi 圖目次/Comtents of figure vii Chapter 1. Introduction and literature review 1 第一章、前言與前人研究 蛋白酶與蛋白酶抑制子 2 蛋白酶抑制子的種類及分群 3 蛋白酶抑制子調控植物生理作用 4 蛋白酶抑制子對於逆境之反應 5 蛋白酶抑制子轉基因植物的影響及發展 7 刺角瓜蛋白酶抑制子 8 總主旨 9 分章目標 9 參考文獻 10 Tables and figures 16 Chapter 2. Cloning and functional analysis of Cucumis metuliferus serine proteinase inhibitor (CmSPI) involve in Papaya ringspot virus (PRSV) resistance and against to Potato virus Y (PVY) in transgenic tobacco 21 第二章、選殖並分析刺角瓜蛋白酶抑制子對木瓜輪點病毒抗性影響及提供轉基因菸草對於馬鈴薯Y病毒之抗性 Abstract 22 Introduction 23 Plant materials and methods 25 Cloning CmSPI gene cDNA and full length genomic fragment of Cucumis metuliferus 25 Construction of phylogenetic tree 25 Construction of binary vector and bacterial strain 26 Plant material and gene transformation 26 Inoculation of plant viruses 27 Detection of gene expression 27 Results 30 Cloning and characterized of CmSPI 30 Generation of CmSPI RNAi transgenic plant 30 Alteration of the resistance in CmSPI RNAi C. metuliferus 31 Resistance to virus in transgenic tobacco 32 Discussion 33 CmSPI involved in plant physiological response and plant defence 33 Silencing of CmSPI altered the resistance to PRSV in horned melon 34 Expression CmSPI in tobacco plants can supply resistance for PVY 34 Conclusions 36 References 37 Tables and Figures 43 Chapter 3. Investigation of transgenic tobacco salt and drought tolerance in overexpression of horned melon serine proteinase inhibitor gene in tobacco plants 52 第三章、轉殖絲氨酸蛋白酶抑制基因之圓葉菸草對鹽分及乾旱逆境之耐性 摘要 53 Abstract 54 前言 55 材料與方法 57 試驗材料與載體構築 57 菸草基因轉殖與再生 57 基因表現及檢測 58 逆境發芽試驗 58 幼苗鹽害逆境處理 59 葉圓片非生物逆境處理 59 植株性狀檢測 59 試驗統計分析 60 結果 61 菸草轉殖株檢測與分析 61 菸草CmSPI轉殖株於鹽分逆境下的表現 61 菸草CmSPI轉殖株於乾旱逆境下的表現 62 討論 64 CmSPI基因提高種子於鹽害及乾旱逆境下的發芽率 64 CmSPI基因能維持植株在乾旱逆境下的葉綠素含量 65 轉基因套數與植株不同生長時期影響CmSPI基因表現及抗逆境能力 65 參考文獻 67 圖表 70 Chapter 4. Conclusions 76 第四章、結論zh_TW
dc.language.isoen_USzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-02-05起公開。zh_TW
dc.subjectCucumis metuliferusen_US
dc.subjectserine proteinase inhibitoren_US
dc.subjectPapaya ringspot virusen_US
dc.subjectbioticen_US
dc.subjectabioticen_US
dc.subject刺角瓜zh_TW
dc.subject絲氨酸蛋白酶抑制子zh_TW
dc.subject木瓜輪點病毒zh_TW
dc.subject生物逆境zh_TW
dc.subject非生物逆境zh_TW
dc.title刺角瓜絲氨酸蛋白酶抑制子基因選殖及功能分析zh_TW
dc.titleCloning and functional analysis of serine proteinase inhibitor of Cucumis metuliferusen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-02-05zh_TW
dc.date.openaccess2018-02-05-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1en_US-
item.grantfulltextrestricted-
Appears in Collections:農藝學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-104-8096031101-1.pdf2.7 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.