Please use this identifier to cite or link to this item:
標題: 外源褪黑激素對Hypericum perforatum L. (聖約翰草)及Hypericum coris L.在低溫與光週期處理下生長和活性成分之影響以及聖約翰草於設施栽培之生產評估
Effects of exogenous melatonin application on the growth and active ingredients of St. John's wort (Hypericum perforatum L.) and Hypericum coris L. under low temperature and photoperiodic treatments and production evaluation of St. John's wort in culture facilities
作者: Meng-Da Ye
關鍵字: melatonin;Hypericum perforatum L.;Hypericum coris L.;low temperature;photoperiodic;褪黑激素;聖約翰草;低溫;光週期
引用: 李會寧、王存連。2000。貫葉連翹的研究進展與可持續發展之對策。漢中師範學院學報。18:79-82。 周宜沁。2014。聖約翰草有效成分於不同栽培條件下之含量與其微波輔助萃取方法之研究。國立中興大學農藝系。碩士論文。台中。 鍾明修。2011。褪黑激素在聖約翰草中含量受之週期及光線影響之研究。國立中興大學農藝系。碩士論文。台中。 Arnao, M. B. and J. Hernandez-Ruiz. 2006. The physiological function of melatonin in plants. Plant Signal Behav. 1: 89-95. Bajwa, V. S., R. S. Mukund, M. S. Sherif, J. M. Susan and K. S. Praveen. 2014. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J. Pineal Res. 56 : 238-245. Balzer, I., B. Bartolomaeus and B. Hocker. 1998. Circadian rhythm of melatonin content in chlorophyceae. Abstracts of the Workshop of the European Society for Chronobiology: News from the Plant Chronobiology Res. pp. 55-56. Beerhues, L. 2006. Hyperforin. Phytochemistry 67 : 2201-2207. Berghöfer, R. and J. Hölzl. 1987. Biflavonoids in Hypericum perforatum L. ; Part 1. Isolation of I3'II8-biapigenin. Planta Med. 53:216-17. Bonnefont-Rousselot, D. and F. Collin. 2010. Melatonin: action as antioxidant and potential applications in human. Toxicology 278:55-67. Brolis, M., B. Gabetta, N. Fuzzati, R. Pace, F. Panzeri and F. Peterlongo. 1998. Identification by high-performance liquid chromatography–diode array detection–mass spectrometry and quantification by high performance liquid chromatography–UV absorbance detection of active constituents of Hypericum perforatum. J. Chromatogr. A. 825: 9-16. Chow, J. M., S. C. Shen, S. K. Huan, H. Y. Lin and Y. C. Chen. 2005. Quercetin, but not rutin and quercitrin, prevention of H2O2-induce dapoptosis via anti-oxidant activity and heme oxygenase gene expression in macrophages. Biochem. Pharmacol. 69:1839-1851. Couch, J. F., J. Naghski and C. F. Krewson. 1946. Buckwheat as a source of rutin. Science 130:197-198. Dagana, Y., N. Zisapelb, D. Nofc, M. Laudond and J. Atsmone. 1997. Rapid reversal of tolerance to benzodiazepine hypnotics by treatment with oral melatonin: a case report. Eur. Neuropsychopharm. 7 : 157-160. Ganzera, M., J. Zhao and I. A. Khan. 2001. Hypericum perforatum -chemical profiling and quantitative results of St. John's wort products by an improved high-performance liquid chromatography method. J. Pharm. Sci. 91 : 623-30. Ghavamaldin, A., R. Aptin, P. khalil, G. Mansour and T. Mariamalsadat. 2012. Study of variation of biochemical components in Hypericum perforatum L. grown in North of Iran. J. Med. Plants Res. 6 : 366-372. Guerrero, J. R., P. García-Ruíza, J. Sánchez-Bravoa, M. Acosta and M. B. Arnaob. 2001. Quantitation of indole-3-acetic acid by LC with electrochemical detection in etiolated hypocotyls of Lupinus albus. J. Liq. Chromatogr. Rel. Tech. 24 : 3095-3104. Hardeland, R. and B. Poeggeler. 2003. Non-vertebrate melatonin. J. Pineal Res. 34 : 233-241. Hernandez-Ruiz, J., A. Cano and M. B. Arnao. 2005. Melatonin acts as a growth stimulating compound in some monocot species. J. Pineal Res. 39: 137-142. Jaakola, L. and A. Hohtola. 2010. Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell Environ. 33:1239-1247. Janas, K. M. and M. M. Posmyk. 2013. Melatonin, an underestimated natural substance with great potential for agricultural application. Acta. Physiol. Plant. 35:3285 -3292. Kang K., K. Kong, S. Park, U. Natsagdorj, Y. S. Kim and K. Back. 2011. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice. J. Pineal Res. 2011; 50:304 -309 Kaul, R. 2000. Johanniskraut;Wissenschaftliche Verlagsgesellschaft mbH Stuttgart. ISBN. 3:1047-1704. Lerner, A. B., J. D. Chase and Y. Takahashi. 1958. Isolation of melatonin, the pineal factor that lightens mclanocytes. J. Am. Chem. Soc. 80: 2057-2058. Mayo, J. C., R. M. Sainza, I. Antolin, F. Herreraa,V. Martin and C. Rodriguez. 2002. Melatonin regulation of antioxidant enzyme gene expression. Cell Mol. Life Sci. 59: 1706–1713. Mosaleeyanon, K., S.M.A. Zobayed, F. Afreen and T. Kozai. 2005. Relationships between net photosynthetic rate and secondary metabolite contents in St. John's wort. Plant Sci. 169 : 523 -531. Murch, S. J., K. Haq, H. P. V. Rupasinghe and P. K. Saxena. 2003. Nickel contamination affects growth and secondary metabolite composition of St. John's wort(Hypericum perforatum L.). Environ. Exp. Bot. 49:251- 257. Park, W. J. 2011. Melatonin as an endogenous plant regulatory signal:debates and perspectives. J. Plant Biol. 54:143-149 Pelagio-Flores R., E. Munoz-Parra, R. Ortiz-Castro, and J. L. pez-Bucio. 2012. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J. Pineal Res. 53:279-288. Piperopoulos, G., R. Lotz, A. Wixforth, T. Schmierer and K. Zeller. 1997. Determination of naphthodianthrones in plant extracts from Hypericum perforatum L. by liquid chromatography–electrospray mass spectrum- try. J. Chromatogr. B Biomed. Sci. Appl. 695:309-316. Posmyk, M. M. and K. M. Janas. 2009. Melatonin in plants. Acta. Physiol. Plant. 31 : 1-11. Posmyk, M. M., M. Bałabusta, M. Wieczorek, E. Sliwinska and K. M. Janas. 2009. Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling. J. Pineal Res. 46:214–223. Pelagio-Flores R., E. Munoz-Parra, R. Ortiz-Castro, and J. L. pez-Bucio. 2012. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J. Pineal Res. 53:279-288. Radušienė, J. B. Karpavičienė and Ž. Stanius. 2012. Effect of external and internal factors on secondary metabolites accumulation in St. John's worth. Bot. Lith. 18:101-108. Reiter, R. J. and D. X. Tan, D. Acuna-Castroviejo. 2000. Melatonin: mechanisms and actions as an antioxidant. Curr. Top. Biophys. 24: 171-183. Robson, N.K.B. 1981. Studies in the genus Hypericum L. (Guttiferae). 2. Characters of the genus. Bull. Br. Mus. Nat. Hist. (Botany) 8:55–236. Robson, N. K. B. 2003. Hypericum botany. In Ernst, E, (Ed.), Hypericum; The Genus Hypericum. Taylor and Francis, New York. pp. 1-22. Sangkyu, P., and B. Kyoungwhan. 2012.Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J. Pineal Res. 53:385–389 Soelberg, J., L.B. J?rgensen and A.K. Jager. 2007. Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann. Bot. 99:1097 -1100. Southwell, I. A. and C. A. Bourke. 2001. Seasonal variation in hypericin content of Hypericum perforatum L. (St. John's wort). Phytochemistry 56:437-441. Stehle, J. H., A. Saade, O. Rawashdeh, K. Ackermann, A. Jilg, T. Sebeste´rny and E. Maronde. 2011. A survey of molecular details in the human pineal gland in light of phylogeny, structure, function and chronobiological diseases. J. Pineal Res. 51 : 17-43. Süntar, I. P., E. K. Akkol, F. N. Yalcın, U. Koca, H. Keles and E. Yesilada. 2010. Wound healing potential of Sambucus ebulus L. leaves and isolation of an active component, quercetin 3-O-glucoside. J. Ethnopharmacol. 129: 106-114. Tan, D. X., R. Hardeland, L. C. Manchester, S. D. Paredes, A. Korkmaz, R. M. Sainz, J. C. Mayo, L. Fuentes-Broto, R. J. Reiter. 2010. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol. Rev. 85:607-623. Tawaha, K., M. Gharaibeh, T. El-Elimat and F. Q. Alali. 2010. Determination of hypericin and hyperforin content in selected Jordanian Hypericum species. Ind. Crops Prod. 32 : 241-245. Turk, H., S. Erdal, M. G. O. Atici, Y. Demir, and D. Yanmis. 2014. The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul. 74: 139-152. Zobayed, S.M.A., and P. K. Saxena. 2003. Production of St. John's wort plants under controlled environment for maximizing biomass and secondary metabolites. In Vitro. Cell. Dev. Biol. Plant 40: 108-114. Zobayed, S.M.A., F. Afreen, E. Goto and T. Kozai. 2006. Plant–environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum. Ann. Bot. 98:793-804.
本研究以聖約翰草(Hypericum perforatum L.)和Hypericum coris L.作為試驗材料,探討不同光週期以及低溫和光週期逆境下外源褪黑激素對兩種試驗材料活性物質之影響。以5個不同之光週期處理(L:D=6 h:18 h、12 h:12 h、18 h:6 h、10 h:10 h、14 h:14 h),並利用高效液相色層分析儀分析兩種材料中有效成分之累積情形,發現聖約翰草中之褪黑激素、金絲桃素和槲皮素的含量會隨著光照時間延長而增加,而H. coris則是在褪黑激素和槲皮素的含量上隨著光照時間延長而增加。另外,聖約翰草和H. coris兩種材料中芸香苷在同步化條件(有時間賦予者)之光週期設定為20小時
(10 h:10 h)均能測得最高之含量,分別為11.10 μg/mg FW、9.83 μg/mg FW。
為探討外源褪黑激素在聖約翰草和H. coris中是否能提升其對逆境的抵抗力,將聖約翰草和H. coris於低溫環境 (10 ℃)和光週期逆境 (L:D = 10 h:10 h)下種植,並添加五種褪黑激素處理 (0 μΜ、125 μΜ、250 μΜ、500 μΜ及750 μΜ) 。結果顯示兩種試驗材料進行外源褪黑激素處理均能提升根部的生長,且在特定的劑量下(250、750 μM),能提升兩種實驗材料中內源褪黑激素、貫葉連翹素之含量1~2倍。
在控制環境的栽培設施中作聖約翰草的生產評估試驗,顯示不同品牌和栽培介質的比例會影響此藥草活性成分的累積,以不同盆器栽培聖約翰草的試驗中,顯示保麗龍盆器較佳。另外,施用10 %霍格蘭氏稀釋液可增進聖約翰草生物量和褪黑激素、貫葉連翹素及芸香苷的含量,但施肥頻率週期對聖約翰草的生產並無明顯影響。而在三種不同設施栽培條件的比較中,利用自然光輔助人工光源的溫室設施環境呈現較有利於聖約翰草小規模的量產。

Hypericum perforatum L. and Hypericum coris L. have been taken as experimental materials in this study. Effects of exogenous melatonin on active compounds of H. perforatum and H. coris under different photoperiods and temperature / photoperiodic stresses have been investigated. Amounts of active ingredients of both experimental materials have been analysed by high performance liquid chromatography (HPLC) under 5 different photoperiods (L: D = 6 h: 18 h、12 h: 12 h、18 h: 6 h、10 h: 10 h and 14 h: 14 h). The contents of melatonin, hypericin, and quercetin of H. perforatum will increase with the lengthened periods of light phase. Whereas, the levels of melatonin and quercetin of H. coris will be elevated with the lengthened periods of light phase. In addition, the highest amounts of rutin of H. perforatum and H. coris were detected under the entrained (with Zeitgeber) condition of 20 h- photoperiod (10 h:10 h) with 11.10 μg / mg FW and 9.83 μg / mg FW, respectively.
In order to explore the effects of exogenous melatonin on resistance of H. perforatum and H. coris to stresses, the plants were cultivated under low temperature (10 ℃) and photoperiodic (L:D = 10 h:10 h) stress with application of 5 melatonin treatments (0 μΜ, 125 μΜ, 250 μΜ, 500 μΜ and 750 μΜ). It reveals that exogenous melatonin treatments can improve root growth of both experimental materials. At certain dosages (250 μΜ and 750 μΜ) of applied melatonin, the contents of endogenous melatonin and hyperforin of H. perforatum and H. coris can be elevated circa 1~2 folds.
For the production evaluation of H. perforatum under controlled environments of culture facilities, it exhibits that different sources and proportion of growth media would influence the accumulation of active compounds in this medicinal herb. Among different culture pots, styrofoam pot used for cultivation of H. perforatum has shown to be better. Otherwise, it shows that application of 10% Hoagland's solution can improve the biomass and contents of melatonin, hyperforin and rutin of H. perforatum, but with no significant effects between frequencies of applied nutrient solution. Comparison of three different culture facilities for small-scale production evaluation of H. perforatum, it reveals that green house composed of natural lights assisted with artificial light sources is superior.
其他識別: U0005-2306201516343800
Rights: 同意授權瀏覽/列印電子全文服務,2015-07-17起公開。
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101031209-1.pdf7.35 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.