Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89527
標題: '台農 2 號'冬瓜種子休眠機制之研究
Study on the Mechanism of Seed Dormancy in Wax Gourd (Benincasa hispida Cogn.) 'Tainung 2'
作者: Hong-Ling Yeh
葉虹伶
關鍵字: wax gourd;seed:dormancy;germination;ABA;GA;respiration;after-ripening;冬瓜;種子;休眠;發芽;ABA;GA;呼吸作用;後熟作用;碳水化合物
引用: 王長林、劉宜生、重楊、龐士文。1997。浸種時間對一串鈴冬瓜種子萌發的影響。中國蔬菜 4: 19-21。 王幸瑜、宋妤。2005。綠花皮萊豆種子活力之評估。植物種苗 7(2): 1-12。 中國科學院中國植物誌編委会。1986。中國植物誌 73: 198。科學出版社。 朱德民、王慶裕、陳光超。1981。種子發芽與激勃素。科學農業 29(7-8): 201-209。 林子凱、王三太、王毓華、鄧汀欽、蕭吉雄。2006。冬瓜新品種'台農 2 號'之育成。農業試驗所技術服務 68: 16-18。 林學詩。1993。改善冬瓜種子發芽力方法之研究。中國園藝 39(3): 128-133。 林學詩。1995。台灣農家要覽-農作三 p. 487-490。豐年社。台北。 周?貴、湯紹虎、孫敏、常來旺。2007。海藻糖對滲透脅迫下油菜種子萌發對幼苗生長影響。西南師範大學學報 32(1): 39-42。 施佳宏、郭華仁。1999。木瓜種子的 TTC 檢查法。植物種苗 1: 47-56。 高景輝。2005。植物生理分析技術。五南圖書出版股份有限公司。台北。 陸桂耀。2006。提高黑皮冬瓜種子發芽率的方法。廣西農學報 21: 35-36。 陳能阜 趙光武 何勇 朱祝軍 2009。測定種子活力的新技術-Q 2 技術 種子 12: 112-114。中國學術期刊網路出版社。 陳龍英、許國慰。1992。冬瓜種子發芽條件初探。種子 5: 34。 黃如葵。2006。冬瓜種子質量在其發育過程及採後處理中的變化。中國蔬菜 9: 16-18。 費雯綺、王喻其。2010。植物保護手冊。行政院農業委員會藥物毒物試驗所。台中。 楊威源。2007。用魔角旋轉固態核磁共振光譜和微影像研究芝麻種子發芽。國立中山大學系研究所碩士論文。高雄。 葉虹伶、宋妤。2008。冬瓜種子之 TTC 檢測法。植物種苗 10:53-58。 葉虹伶、宋妤、林子凱。2012。冬瓜種子休眠性調查及打破休眠方法之研究。植物種苗 14:33-45。 蔡竹固、陳瑞祥、童伯開。1999。冬瓜之病害及防治。農業世界雜誌 189: 65-69。 劉芳芸。2009。番木瓜果皮?斑微細構造及酒精對種子萌芽與幼苗耐淹水之研究。中興大學園藝學系碩士論文。台中。 劉英德。1988。種子生理。五洲出版社。台北。p. 99-215,p. 344-431。 劉政國、秦榮耀。2002。提高節瓜種子發芽力的種子處理技術的研究。種子 125(5): 16-17。 劉政國、秦榮耀。2006。節瓜種子休眠機理的初步研究。北方園藝 2: 19-20。 劉政國、龍明華。2008。瓜類蔬菜種子休眠與萌發研究進展。長江蔬菜 5: 31-33。 劉獨臣、劉小俊、房超、李躍建。2006。幾種藥劑處理對無棱冬瓜種子發芽力的影響。中國種業 11:39-40。 謝大森、何曉明、林毓娥、彭慶務、赫新洲。2002。打破冬瓜種子休眠試驗初報。廣東農業科學 2:p. 18-20。 譚景瑩、董志偉。2003。英漢生物化學及分子生物學詞典。藝軒圖書出版社。台北。 Adetunji, I. A. 1997. Effect of time interval between pod set and harvesting on maturity and seed quality of fluted pumpkin. Exp. Agr. 33: 449-457. Amritphale, D., K. Yoneyama, Y. Takeuchi, P. Ramakrishna, and D. Kusumoto. 2005. The modulating effect of the perisperm-endosperm envelope on ABA-inhibition of seed germination. J. Exp. Bot. 56: 2173-2181. Amritphale, D., P. Ramakrishna, B. Singh, and S. K. Sharma. 2010. Solute permeation across the apoplastic barrier in the perisperm–endosperm envelope in cucumber seeds. Planta 231: 1483-1494. Anand, A., J. Bhardwaj, and S. Nagarajan. 2010. Comparative evaluation of seed coat dormancy breaking treatments in Stylosanthes seabrana. Grass Forage. Sci. 66: 272-276. Angelovici, R., G. Galili, A. R. Fernie, and A. Fait. 2010. Seed desiccation: a bridge between maturation and germination. Trends Plant Sci. (15) 4: 1360-1385. Bailly, C., C. Audigier, F. Ladonne, M. H. Wagner, F. Coste, F. Corbineau, and D. Côme. 2001. Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. J. Exp. Bot. 52: 701-708. Bailly, C. 2004. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14: 93-107. Baker, C. J., D. P. Roberts, N. M. Mock, and V. L. Blount. 2004. A novel open-system technique to monitor real-time oxygen consumption during early phases of seed germination. Seed Sci. Res. 14: 17-26. Bakrim, A., M. Lamhamdi, F. Sayah, and F. Chibi. 2007. Effects of plant hormones and 20-hydroxyecdysone on tomato (Lycopersicum esculentum) seed germination and seedlings growth. Afr. J. Biotechnol. 6: 2792-2802. Baskin, C. C. and J. M. Baskin. 1998. Seeds–ecology, biogeography, and evolution of dormancy and germination. San Diego, CA, USA: Academic Press. Baskin, J. M. and C. C. Baskin. 2004. A classification system for seed dormancy. Seed Sci. Res. 14: 1-16. Baskin, J. M., C. C. Baskin, and X. Li. 2000. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Spec. Biol. 15: 139-152. Bewley, J. D. and M. Black. 1982. Physiology and biochemistry of seeds in relation to germination 2 -viability, dormancy, and environmental control. Springer-Verlag. Berlin Heidelberg. Germany. p. 1, 11, 14 Bewley, J. D. and M. Black. 1997. Seed physiology of development and germination 2nd edition. Plenum Press. New York. p. 36-39, 117-119. Bewley, J. D., K. J. Bradford, H. W. M. Hilhorst, and H. Nonogaki. 2012. Seeds: physiology of development, germination and dormancy, 3rd Edition. p. 27-83. Springer. New York Heidelberg Dordrecht London. Bewley, J. D. and M. Black. 1997. Seed physiology of development and germination 2nd edition. Plenum Press. New York. p. 36-39, 117-119. Borowski, A. M., V. A. Fritz, and L. Waters, Jr. 1995. Seed maturity and desiccation affect carbohydrate composition and leachate conductivity in shrunken-2 sweet corn. HortScience 30: 1396-1399. Bozena, C. and K. Schmitz. 1997. Changes in soluble sugar and activity of α-galactosidases and acid invertase during muskmelon (Cucumis melo L.) fruit development. J. Plant Physiol. 151: 41-50. Bradford, K. J., R. L. Benech-Arnold, D. Côme, and F. Corbineau. 2008. Quantifying the sensitivity of barley seed germination to oxygen, abscisic acid, and gibberellin using a population-based threshold model. J. Exp. Bot. 59: 335-347. Cao, D. D., J. Hu, S. J. Zhu, W. M. Hu, and A. Knapp. 2010. Relationship between changes in endogenous polyamines and seed quality during development of sh2 sweet corn (Zea mays L.) seed. Sci. Hortic. 123: 301-307. Chen, S. S. C. and J. L. L. Chang. 1972. Does gibberellic acid stimulate seed germination via amylase synthesis? Plant Physiol. 49: 441-442. Chen, S. Y., S. R. Kuo, and C. T. Chien. 2008. Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiology 28: 1431-1439. Chrost, B. and K. Schmitz. 1997. Changes in soluble sugar and activity of α-galactosidases and acid invertase during muskmelon (Cucumis melo L.) fruit development. J. Plant Physiol. 151: 41-50. Claudie, R., J. B. Cliquetb, and A. M. Limami. 2005. Stimulation of alanine amino transferase (AlaAT) gene expression and alanine accumulation in embryo axis of the model legume Medicago truncatula contribute to anoxia stress tolerance. Physiol. Plant. 123: 30-39. Colovina, E. A., A. N. Tikhonov, and F. A. Hoekstra. 1997. An electron paramagnetic resonance spin-probe study of membrane-permeability changes with seed aging. Plant Physiol. 11: 383-389. Copeland, C. D. and M. B. Mcdonal. 1995. Seed Science and Technology. Cnampman & Han. New York. Copeland, L. O. and M. B. Mcdonal. 2001. Principles of seed science and technology 4th edition. USA. p. 24, 27, 201-203. Corbineau, F. 2012. Markers of seed quality: from present to future. Seed Sci. Res. 22: S61-S68. Das, K. K., R. K. Sarkar, and A. M. Ismail. 2005. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci. 168: 131-136. Davidson, K. G. V., F. D. Moore, E. E. Roos, S. Nath, and S. Sowa. 1994. Comparison of seed-quality indices resulting from single-seed electroconductivity measurements. HortScience 29:1158-1163. Demir, I., K. Eraslan, and Z. Sariyildiz. 2003. Seed quality in winter squash (Cucurbita maxima L.) seeds stored at high moisture content in the fruit after harvest, Eur. J. Hort. Sci. 68: 201-203. Demir, I., K. Mavi, and C. Oztokat. 2004. Changes in germination and potential longevity of watermelon (Citrullus lanatus) seeds during development. New Zeal. J. Crop Hort. (32): 139-145. Desai, B. B., P. M. Kotecha, and D. K. Salunkhe. 2004. Seeds Handbook: Biology, Production, Processing and Storage (Books in Soils, Plants, and the Environment). Marcel Dekker, Inc. New York. p. 7, 15-19, 73-74, 78-79, 118, 121. Dixon, G. R. 2006. Seed and seedling management. Chapter 3. p. 73-90. CABI. UK. Domash, V. I., R. F. Protsko, V. A. Vasyuk, S. V. Shumikhin, L. V. Ermolitskaya, and T. P. Sharpio. 2006. The content of abscisic acid and the activities of proteinases and trypsin inhibitory proteins, in the germinating seed of common beans under water stress conditions. Appl. Biochem. Microbiol. 42: 97-100. Edelstein, M. and G. E. Welbaum. 2011. Seed O2 uptake and germination of cold-tolerant and cold-intolerant cultivars of muskmelon. Crop Sci. 51: 810-817. Edelstein, M., K. J. Bradford, and D. W. Burger. 2001. Metabolic heat and CO2 production rates during germination of melon (Cucumis melo L.) seeds measured by microcalorimetry. Seed Sci. Res. 11: 265-272. Finch-Savage, W. E. and G. Leubner-Metzger. 2006. Seed dormancy and the control of germination. New Phytol. 171: 501-523. Footitt, S. and M. A. Cohn. 1995. Seed dormancy in red rice (Oryza sativa). IX. Embryo fructose-2,6-bisphosphate during dormancy breaking and subsequent germination. Plant Physiol. 107: 1365-1370. Gianinetti, A. and P. Vernieri. 2007. On the role of abscisic acid in seed dormancy of red rice. J. Exp. Bot. 58: 3449-3462. Gibson, S. I. 2004. Sugar and phytohormone response pathways: navigating a signalling network. J. Exp. B. 55: 253-264. Handley, L. W., D. M. Pharr, and R. F. McFeeters. 1983. Carbohydrate changes during maturation of cucumber fruit. Plant Physiol. 72: 498-502. Hays, D. B., E. C. Yeung, and R. P. Pharis. 2002. The role of gibberellins in embryo axis development. J. Exp. Bot. 53: 1747-1751. Hernández-Nistal, J., I. Martín, R. Esteban, B. Dopico, and E. Labrador. 2010. Abscisic acid delays chickpea germination by inhibiting water uptake and down-regulating genes encoding cell wall remodelling proteins. Plant Growth Regul. 61: 175-183. Hilhorst, H. W. M. 2007. Seed development, dormancy and germination. P. 50-71. Blackwell Publishing Ltd. UK. Hilhorst, H. W. M. and C. M. Karssen. 1992. Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regulation 11: 225-238. Iglesias-Fernández, R. and A. Matilla. 2009. After-ripening alters the gene expression pattern of oxidases involved in the ethylene and gibberellin pathways during early imbibition of Sisymbrium officinale L. seeds. J. Exp. Bot. 60: 1645-1661. International Seed Testing Association. 1999. International rules for seed testing. Switzerland. International Seed Testing Association. 2009. International rules for seed testing. Switzerland. Jacobsen, S. E. and N. E. Olszewski. 1993. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5: 887-896. Jitendrakumar, S. H. 2005. Studies on seed production and post-harvest techniques in ridge gourd (Luffa acutangula L. Roxb). Thesis of degree of doctor of philosophy in seed science and technology, University of Agricultural Sciences, Dharwad. Justice, O. L. and L. N. Bass. 1978. Principles and practices of seed storage. U. S. Department of Agriculture handbooks. p. 506. Kępczyński, J., E. Kępczyńska, and M. Bihun. 2003. The involvement of ethylene in the release of primary dormancy in Amaranthus retroflexus seeds. Plant Growth Regul. 39: 57-62. Kobayashi, Y., K. Nabeta, and H. Matsuura. 2010. Chemical inhibitors of viviparous germination in the fruit of watermelon. Plant Cell Physiol. 51: 1594-1598. Kodde, J., W. T. Buckley, C. C. de Groot, M. Retiere, A. M. V. Zamora, and S. P. C. Groot. 2012. A fast ethanol assay to detect seed deterioration. Seed Sci. Res. 22: 55-62. Leadem, C. L. 1997. Dormancy-unlocking seed secrets. In: Landis, T.D.; Thompson, JR., tech. coords. National Proceedings, Forest and Conservation Nursery Associations. Gen. Tech. Rep. PNWG TR-419. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 43-52. Leon, R. G., D. C. Bassham, and M. D. K. Owen. 2006. Germination and proteome analyses reveal intraspecific variation in seed dormancy regulation in common waterhemp (Amaranthus tuberculatus). Weed Sci. 54: 305-315. Liu, G. D., D. M. Porterfield, Y. C. Li, and W. Klassen. 2012. Increased oxygen bioavailability improved vigor and germination of aged vegetable seeds. HortScience. 47: 1714-1721. Liu, Z. J., Y. Q. Zhang, R. Z. Liu, H. L. Hao, Z. Wang, and Y. R. Bi. 2011. Phytochrome interacting factors (PIFs) are essential regulators for sucrose-induced hypocotyl elongation in Arabidopsis. J. Plant Physiol. 168: 1771-1779. Livesley, M. A. and C. M. Bray. 1991. The effect of ageing upon α-amylase production and protein synthesis. Ann. Bot. 68: 69-73. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275. Lu, W., X. L. Tang, Y. Q. Huo, R. Xu, S. D. Qi, J. G. Huang, C. C. Zheng, and C. A. Wu. 2012. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene 503: 65-74. Madore, M. A. 2011. Biosynthesis and degradation of galactosyloligosaccharides. Glycoscience: Chemistry and chemical biology I-III Chapter 5.4. Springer. New York. Matilla, A. J. 2000. Ethylene in seed formation and germination. Seed Sci. Res. 10: 111-126. Matilla, A. J. and M .A. Matilla-Vázquez. 2008. Involvement of ethylene in seed physiology. Plant Sci. 175: 87-97. McDonald, M. B. and L. O. Copeland. 1997. Seed production. p. 19-28. Chapman & Hall. New York. Mei, Y. Q. and S. Q. Song. 2008. Early morphological and physiological events occurring during germination of maize seeds. Agr. Sci. China 7: 950-957. Muthukrishnan, S., G. R. Chandra, and E. S. Maxwell. 1983. Hormonal control of α-amylase gene expression in barley. J. Biol. Chem. 258: 2370-2375. Nakashima, K. and K. Yamaguchi-Shinozaki. 2013. ABA signaling in stress-response and seed development. Plant Cell Rep. 32: 959-970. Nambara, E., M. Okamoto, K. Tatematsu, R. Yano, M. Seo, and Y. Kamiya. 2010. Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 20: 55-67. Nambara, E., T. Akazawa, and P. McCourt. 1991. Effects of the gibberellin biosynthesis inhibitor uniconazol on mutants of Arabidopsis. Plant Physiol. 97: 736-738. Nerson, H. 2002. Effects of seed maturity, extraction practices and storage duration on germinability. Sci. Hortic. 93: 245-256. Nerson, H. 2007. Seed production and germinability of cucurbit crops. Seed Sci. Biotech. 1: 1-10. Nonogaki, H. 2006. Seed germination-The biochemical and molecular mechanisms. Breeding Sci. 56: 93-105. Nonogaki, H., G. W. Bassel, and J. D. Bewley. 2010. Germination-still a mystery. Plant Sci. 179: 574-581. Obroucheva, N. V. 2010. Distinct regulatory patterns of seed dormancy release and germination commencement. Seed Sci. Technol. 38: 265-279. Pagano, E. A., R. L. Benech-Arnold, M. Wawrzkiewicz, and H. S. Steinbach. 1997. α-amylase activity in developing sorghum caryopses from sprouting resistant and susceptible varieties. The role of ABA and GAs on its regulation. Ann. Bot. 79: 13-17. Pan, S. M., T. C. Chang, R. H. Juang, and J. C. Su. 1988. Starch phosphorylase inhibitor is β-amylase. Plant Physiol. 88: 1154-1156. Park, M. J., H. K. Yim, H. G. Park, J. Lim, S. H. Kim, and Y. S. Hwang. 2010. Interference with oxidative phosphorylation enhances anoxic expression of rice α-amylase genes through abolishing sugar regulation. J. Exp. Bot. 61: 3235-3244. Perl, M. 1982. ATP accumulation in peanut seeds during seed-ripening and during the dormancy-breaking process. J. Exp. Bot. 33: 449-455. Perata, P., L. Guglielminetti, and A. Alpi. 1996. Anaerobic carbohydrate metabolism in wheat and barley, two anoxia-intolerant cereal seeds. J. Exp. Bot. 47: 999-1006. Pimenta Lange, M. J., A. Liebrandt, L. Arnold, S. M. Chmielewsk, A. Felsberger, E. Freier, M. Heuer, D. Zur, and T. Lange. 2013. Functional characterization of gibberellins oxidases from cucumber, Cucumis sativus L. Phytochemistry 90: 62-69. Ranieri, A., A. Castagna, B. Baldan, and G. F. Soldatini. 2001. Iron deficiency differently affect peroxidase isoforms in sunflower. J. Exp. Bot. 52: 25-35. Rapala-Kozik, M., E. Kowalska, and K. Ostrowska. 2008. Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J. Exp. Bot. 59: 4133-4143. Reuzeau, C. and G. Cavalie. 1995. Activities of free radical processing enzymes in dry sunflower seeds. New Phytol. 130: 59-66. Rolletschek, H., W. Weschke, H. Weber, U. Wobus, and L. Borisjuk. 2004. Energy state and its control on seed development: starch accumulation is associated with high ATP and steep oxygen gradients within barley grains. J. Exp. Bot. 55: 1351-1359. Rook, F. and M. W. Bevan. 2003. Genetic approaches to understanding sugar-response pathways. J. Exp. Bot. 54: 495-591. Shewry, P. R. and R. Casey. 1999. Seed proteins. p. 1-10. Kluwer academic publishers. Netherlands. Spielbauer, G., L. Li, L. Römisch-Margl, P. T. Do, R. Fouquet, A. R. Fernie, W. Eisenreich, A. Gierl, and A. M. Settles. 2013. Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation. J. Exp. Bot. 64: 2231-2242. Strommer, J. 2011. The plant ADH gene family. Plant J. 66: 128-142. Sukprakarn, S., S. Juntakool, R. Huang, and T. Kalb. 2005. Saving your own vegetable seeds. A guide for farmers. AVRDC-The world vegetable center. Bangkok,Thailand. Technical Service Division and Agricultural Economics Division report. 2009. Taiwan Agricultural Research Institute Council of Agriculture, Executive Yuan. Vol. 80. p. 22-25. Taiwan, Taichung. Todaka, D., H. Matsushima, and Y. Morohashi. 2000. Water stress enhances β-amylase activity in cucumber cotyledons. J. Exp. Bot. 51: 739-745. Van Asbrouck, J. and P. Taridno. 2009. Using the single seed oxygen consumption measurement as a method of determination of different seed quality parameters for commercial tomato seed samples. As. J. Food Ag-Ind. 2009, Special Issue, S88-S95. Vandenbussche, F., B. Vancompernolle, I. Rieu, M. Ahmad, A. Phillips, T. Moritz, P. Hedden, and D. Van Der Straeten. 2007. Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. J. Exp. Bot. 58: 4269-4281. Vertucci, C. W. and A. C. Leopold. 1984. Bound water in soybean seed and its relation to respiration and imbibitional damage. Plant Physiol. 75: 114-117. Wang, Y. P., Y. Wang, K. Ji, S. J. Dai, Y. Hu, L. Sun, Q. Li, P. Chen, Y. F. Sun, C. R. Duan, Y. Wu, H. Luo, D. A. Zhang, Y. D. Guo, and P. Leng. 2013. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation. Plant Physiol. Biochem. 64: 70-79. Weitbrecht, K, K. Müller, and G. Leubner-Metzger. 2011. First off the mark: early seed germination. J. Exp. Bot. 62: 3289-3309. Welbaum, G. E. 1993. Water relations of seed development and germination in muskmelon (Cucumis melo L.) VIII. Development of osmotically distended seeds. J. Exp. Bot. 44: 1245-1252. Welbaum, G. E. 1999. Cucurbit seed development and production. Hort Technolory 9: 341-348. Welbaum, G. E. and K. J. Bradford. 1988. Water relations of seed development and germination in muskmelon (Cucumis melo L. ). I. Water relations of seed and fruit development. Plant Physiol. 86: 406-411. Welbaum, G. E. and K. J. Bradford. 1989. Water relations of seed development and germination in muskmelon (Cucumis melo L.) II. Development of germinability, vigour, and desiccation tolerance. J. Exp. Bot. 40: 1355-1362. Welbaum, G. E., T. Tissaoui, and K. J. Bradford. 1990. Water relations of seed development and germination in muskmelon (Cucumis melo L.) III. Sensitivity of germination to water potential and abscisic acid during development. Plant Physiol. 92: 1029-1037. Welbaum, G. E. and K. J. Bradford. 1991. Water relations of seed development and germination in muskmelon (Cucumis melo L.) VII. Influence of after-ripening and ageing on germination responses to temperature and water potential. J. Exp. Bot. 42: 1137-1145. Wojtyla, L., M. Garnczarska, T. Zalewski, W. Bednarski, L. Ratajczak, and S. Jurga. 2006. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. J. Plant Physiol. 163: 1207-1220. Yim, K. O. and K. J. Bradford. 1998. Callose deposition is responsible for apoplastic semipermeability of the endosperm envelope of muskmelon seeds. Plant Physiol. 118: 83-90. Yoo, E. H. 2010. Seed development and germination enhancement in bottle gourd (Lagenaria siceraria Standl.). Department of Horticulture, Graduate School Seoul National University. Yoshida, S., D. A. Forno, L. H. Cock, and K. A. Gomez. 1976. Laboratory manual for physiological studies of rice. The International Rice Research Institute. Los Banos, Philippines. P. 46-49. Zaini, N. A. M., A. Farooq, A. A. Hamid, and S. Nazamid. 2011. Kundur [Benincasa hispida (Thunb.) Cogn.]: A potential source for valuable nutrients and functional foods. Food Res. Int. 44: 2368-2376.
摘要: 
冬瓜為亞洲地區重要蔬菜作物之一,在栽培上易受病毒病影響生育及產量,冬瓜品種中少數具有抗病毒病特性,可作為抗病育種研究之親本來源,然而引入抗病性之同時於雜交後代發現種子具深休眠特性,造成育苗及品種推廣上問題。本研究中使用之'台農 2 號'冬瓜種子材料即為雜交一代抗病品種,同時種子具深休眠性,本論文目的為以'台農 2 號'冬瓜種子為材料,調查其休眠性形成、研究打破種子休眠最佳處理及探討其種子休眠機制,以提供深休眠冬瓜品種研究經驗及種苗產業上應用。

種子休眠性於發育過程中逐漸形成,本研究調查種子發育過程貯藏物質累積、荷爾蒙含量變化及發芽能力以瞭解休眠成因,並進行打破休眠試驗。由試驗結果可知,'台農 2 號'冬瓜種子授粉 55 天開始具發芽活力,授粉 65天乾物質含量最大達生理成熟,種子發育期間由於內生 ABA 含量累積誘導休眠,因此授粉 75 天種子以四唑染色檢定法(tetrazolium test)測定活力已達100 %,實際發芽率僅 3.3 %。以刻傷處理、GA4+7 80 ppm 處理及果實採後室溫貯藏後熟處理可有效解除'台農 2 號'冬瓜種子休眠,發芽率分別為 70%、85%及 100%。

冬瓜果實經由採後室溫貯藏後熟作用有助於提升種子發芽率及品質,'台農 2 號'冬瓜以授粉 75 天果實進行 50 天果實採後室溫貯藏後熟處理,可完全解除種子休眠性,且種子經 8℃乾燥貯藏一年後仍有 66%發芽率。本研究藉由調查果實採後室溫貯藏後熟期間,種子之構造、貯藏物質、荷爾蒙含量、發芽能力及生理作用改變等,分析果實採後室溫貯藏後熟作用解除種子休眠之關鍵。由試驗結果可知,果實採後室溫貯藏後熟作用使種子種皮及胚乳膜構造改變、提升氣體及物質交換調節能力、增強種子浸種後重新合成 GA4 能力等,並減少 ABA 之合成,因此後熟過程中種子休眠程度逐漸減輕,發芽能力逐漸增加,最終解除種子休眠。

於瞭解'台農 2 號'冬瓜種子休眠成因及解除關鍵後,推測影響休眠之主要因素為荷爾蒙與無氧呼吸作用,因此藉由 GA4+7、GA 生合成抑制劑 PP333及 ABA 處理輔助,以釐清'台農 2 號'冬瓜種子休眠機制。由試驗結果可知,'台農 2 號'冬瓜休眠種子浸種期間二氧化碳生成速率快,並於發芽過程中發生缺氧狀態,引起無氧呼吸作用及乙醛大量累積,影響種子發芽。外加 GA4+7處理可解除種子休眠,促使種子由無氧呼吸轉換為有氧呼吸行為,提升甘油醛-3-磷酸脫氫酶及轉酮酶之活性,增強種子內無氧呼吸產物移除能力,有效提升種子發芽率。果實採後室溫貯藏後熟處理後完全解除種子休眠,同時浸種後二氧化碳生成速率極低,未有無氧呼吸作用發生。

綜合上述結果顯示,'台農 2 號'冬瓜種子休眠受荷爾蒙調控與種皮及胚乳膜限制引起之無氧呼吸作用,可以刻傷、GA4+7 及果實採後室溫貯藏後熟處理解除,有鑑於種苗生產規模及操作便利性考量,推薦以果實採後室溫貯藏後熟處理,為解除'台農 2 號'冬瓜種子休眠最佳方法。

Wax gourd (Benincasa hispida (Thunb.) Cogn.) is an important fruit vegetable in Asia. Wax gourd plant is susceptible to virus diseases, which costs a production loss in early vegetative growth stage. Some varieties of wax gourd are highly resistant to virus diseases, and are selected as parental strains for antivirus breeding. Seeds of virus-resistant hybrid are accompanied with deep seed dormancy that has a negatively affect on commercial variety propagation. The material used in this research was the virus-resistant F1 hybrid wax gourd 'Tainung 2'. Seeds of wax gourd 'Tainung 2' have a deep dormancy. This study focused on seed dormancy induction, seed dormancy-breaking methods, and the mechanism of seed dormancy in wax gourd 'Tainung 2'. And the results of this study could increase the knowledge in seed dormancy of wax gourd varieties with deep seed dormancy, and be utilized in industrial seed production.

Seed dormancy was induced during seed development process. The induction of seed dormancy was studied, included the reserves accumulation, hormone content and seed germination ability during seed development process. The results showed the seed viability of wax gourd 'Tainung 2' was obtained after 55 days of pollination. Seed mass reached a maximum and entered physiological maturation phase after 65 days of pollination. Endogenous ABA content accumulated and induced seed dormancy during seed developed. After 75 days of pollination, seeds reached harvest maturity. There were 3.3% seeds after 75 days of pollination, however the seed vigor by tetrazolium test showed that it had already raised to 100%. Seed dormancy of wax gourd 'Tainung 2' was released by scarification, 80 ppm GA4+7 (instead of germination water) and fruit post-harvest after-ripening, and the seed germination percent raised to 70%, 85%, and 100%, respectively.

Fruit post-harvest after-ripening improved seed quality and germination ability. Wax gourd 'Tainung 2' seed dormancy was completely released after 50 days of fruit post-harvest after-ripening with 75-day-pollinated fruit maturity. There was above 66% germination percent after one-year dry storage under 8°C. The factors involved in releasing seed dormancy during fruit post-harvest after-ripening was studied that included seed structure modification, reserves accumulation, hormone content, seed germination ability and physiological changes. The results showed that fruit post-harvest after-ripening treatment modified seed coat and endosperm membrane structures, improved gas and substances exchange, and enhanced the ability to re-synthesize GA4 as well as reduced ABA content after seeds imbibed. Seed germination ability improved and dormancy released due to dormancy alleviated during after-ripening process.

The results were analyzed that hormone regulation and anaerobic respiration involved in seed dormancy mechanism. GA4+7 , GA biosynthesis inhibitor PP333 and ABA treatments were used to examined in this study. The results showed wax gourd 'Tainung 2' dormant seeds had a high respiration rate and induced anaerobic respiration during imbibition. The acetaldehyde content significantly increased after seed imbibition and related to seeds germination. GA4+7 treatment released seed dormancy, and converted anaerobic respiration to aerobic respiration. Glyceraldehyde-3-phosphate dehydrogenase activity, transketolase activity, and alcohol dehydrogenase activity were raised after GA4+7 treatment, and seed germination was increased. The seeds of after-ripening fruit maintained aerobic respiration during imbibition that meant the seed dormancy had been released.

After generalized assessment of study results described above, seed dormancy of wax gourd 'Tainung 2' was regulated by hormone and the anaerobic respiration induced by seed coat and endosperm membrane interference. Seed dormancy of wax gourd 'Tainung 2' released by scarification, GA4+7 80 ppm treatment and fruit post-harvest after-ripening. The practical way was suggested as harvested fruit after-ripening for relieving seed dormancy used in industrial seed production.
URI: http://hdl.handle.net/11455/89527
其他識別: U0005-0606201514132100
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-15起公開。
Appears in Collections:園藝學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7097032105-1.pdf2.61 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.