Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89535
標題: 玉米花粉飄散模式:利用非線性、擬機械模式與類神經網路評估台灣基改與非基改作物間共存之建議隔離距離
Maize Pollen Dispersal Model: Using Nonlinear, Quasi-mechanistic Models and Neural Networks to Evaluate the Recommended Isolation Distance for Coexistence between GM and Non-GM Crops in Taiwan
作者: Yung-Heng Hsu
徐永衡
關鍵字: 無;無
引用: Abramowitz, M., Stegun, I.A., 1972. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Dover Publications. Aheto, D.W., Reuter, H., Breckling, B., 2011. A modeling assessment of geneflow in smallholder agriculture in West Africa. Environ. Sci. Europe 23, 1-10. Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Automat. Contr., 19, 716-723. Amiri, B.J., Nakane, K., 2009. Comparative prediction of stream water total nitrogen from land cover using artificial neural network and multiple linear regression. Pol. J. Environ. Stud., 18, 151-160. Angevin, F., Klein, E.K., Choimet, C., Gauffreteau, A., Lavigne, C., Messéan, A., Meynard, J.M., 2008. Modelling impacts of cropping systems and climate on maize cross-pollination in agricultural landscapes: the MAPOD model. Eur. J. Agron. 28, 471-484. Arritt, R.W., Clark, C.A., Goggi, A.S., Sanchez, H.L., Westgate, M.E., Riese, J.M., 2007. Lagrangian numerical simulations of canopy air flow effects on maize pollen dispersal. Field Crop Res. 102, 151-162. Astini, J.P., Fonseca, A., Clark, C., Lizaso, J., Grass, L., Westgate, M., Arritt, R., 2009. Predicting outcrossing in maize hybrid seed production. Agron. J. 101, 373-380. Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Sork, V.L., 2004. Using genetic markers to estimate the pollen dispersal curve. Mol. Eco. 13, 937-954. Aylor, D.E., 2002. Settling speed of corn (Zea mays) pollen. J. Aerosol. Sci. 33, 1601-1607. Aylor, D.E., 2003. Rate of dehydration of corn (Zea mays L.) pollen in the air. J. Exp. Bot. 54, 2307-2312. Aylor, D.E., 2004. Survival of maize (Zea mays) pollen exposed in the atmosphere. Agric. For. Meteorol. 123, 125-133. Aylor, D.E., Boehm, M.T., 2006. Quantifying Aerial Concentrations of maize pollen in the atmospheric surface layer using remote-piloted airplanes and Lagrangian stochastic modeling. Amer. Meteor. Soc. 45, 1003-1015. Aylor, D.E., Schultes, N.P., Shields, E.J., 2003. An aerobiological framework for assessing cross-pollination in maize. Agric. For. Meteorol. 119, 111-129. Bannert, M., Stamp, P., 2007. Cross-pollination of maize at long distance. Eur. J. Agron. 27, 44-51. Bannert, M., Vogler, A., Stamp, P., 2008. Short-distance cross-pollination of maize in a small-field landscape as monitored by grain color markers. Eur. J. Agron. 29, 29-32. Bateman, A. J., 1947a. Contamination of seed crops II. Wind pollination. Heredity 1, 235-246. Bateman, A.J., 1947b. Contamination in Seed Crops. III. Relation with isolation distance. Heredity 1, 303-336. Beckie, H.J., Hall, L.M., 2008. Simple to complex: modelling crop pollen-mediated gene flow. Plant Sci. 175, 615-628. Best, D. J., Fisher, N.I., 1979. Efficient simulation of the von Mises distribution. Appl. Stat. 152-157. Bishop, C.M., 2006. Pattern recognition and machine learning. New York: springer. pp. 106. Bohanec, M., Messéan, A., Angevin, F., Žnidaršič, M., 2006. SMAC Advisor: a decision-support tool on coexistence of genetically modified and conventional maize. Proc. Information Society IS, 9-12. Buckland, S.T., Burnham, K.P., Augustin, N.H., 1997. Model selection: an integral part of inference. Biometrics, 603-618. Burnham, K.P., Anderson, D.R., 2004. Multimodel inference understanding AIC and BIC in model selection. Sociol. Method Res. 33, 261-304. Byrne, P. F. and S. Fromherz. 2003. Can GM and non-GM crops coexist? Setting a precedent in Boulder County, Colorado, USA. Food Agric. Environ 1:258-261. Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: The case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Model. 205, 169-180. Chapman, M. A., Burke, J. M., 2006. Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytol. 170, 429-443. Clapham, W.M., Fedders, J. M., 2004. Modeling vegetative development of berseem clover (Trifolium alexandrinum L.) as a function of growing degree days using linear regression and neural networks. Can. J. Plant Sci., 84, 511-517. Clark, J.S., Silman, M., Kern, R., Macklin, E., HilleRisLambers, J., 1999. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80, 1475-1494. Colbach, N., Clermont Dauphin, C., Meynard, J.M., 2001a. GENESYS: a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers I. Temporal evolution of a population of rapeseed volunteers in a field. Agric. Ecosys. Environ. 83, 235-253. Colbach, N., Clermont Dauphin, C., Meynard, J.M., 2001b. GENESYS: a model on the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to volunteers-II. Genetic exchanges among volunteer and cropped populations in a small region. Agric. Ecosys. Environ. 83, 255-270. Coléno, F. C., 2008. Simulation and evaluation of GM and non-GM segregation management strategies among European grain merchants. J. Food Eng. 88, 306-314. Coléno, F.C., Angevin, F., Lécroart, B., 2009. A model to evaluate the consequences of GM and non-GM segregation scenarios on GM crop placement in the landscape and cross-pollination risk management. Agr. Syst. 101, 49-56. Council of Agriculture, 2012a. 2011 Agricultural statistics yearbook. Council of Agriculture, Executive Yuan. R.O.C. (Taiwan), Taipei, pp. 179. Council of Agriculture, 2012b. Food supply and utilization yearbook republic of china 2011. Agriculture, Executive Yuan. R.O.C. (Taiwan) pp. 36. CWB, 2009. 1897~2008 Statistics of climate changes in Taiwan. Central Weather Bureau, Taipei. Dale, P.J., Clarke, B., Fontes, E.M.G.., 2002. Potential for the environmental impact of transgenic crops. Nat. Biotechnol. 20, 567-843. Della Porta, G., Ederle, D., Bucchini, L., Prandi, M., Verderio, A., Pozzi, C., 2008. Maize pollen mediated gene flow in the Po Valley (Italy): source-recipient distance and effect of flowering time. Eur. J. Agron. 28, 255-265. Demont, M., Daems, W., Dillen, K., Mathijs, E., Sausse, C., Tollens, E., 2008. Regulating coexistence in Europe: Beware of the domino-effect! Ecol. Econ. 64, 683-689. Demont, M., Devos, Y., Sanvido, O., 2010. Towards flexible coexistence regulations for GM crops in the EU. EuroChoices 9, 18-24. Denney, J.O., 1992. Xenia includes metaxenia. HortScience, 27, 722-728. Devos, Y., Cougnon, M., Thas, O., Reheul, D., 2008. A method to search for optimal field allocations of transgenic maize in the context of co-existence. Environ. Biosafety Res. 7, 97-104. Devos, Y., Demont, M., Dillen, K., Reheul, D., Kaiser, M., Sanvido, O., 2009. Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review. Agron. Sustain. Dev. 29, 11-30. Devos, Y., Reheul, D., De Schrijver, A., 2005. The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization. Environ. Biosafety Res. 4, 71-87. Devos, Y., Reheul, D., Thas, O., De Clercq, E.M., Cougnon, M., Cordemans, K., 2007. Implementing isolation perimeters around genetically modified maize fields. Agron. Sustain. Dev. 27, 155-165. Efron, B., 1979. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1-26. Efron, B., 1982. The jackknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia, Pa. European Commission, 2003. Commission recommendations of 23 July 2003 on guidelines for the development of national strategies and best practices to ensure the coexistence of genetically modified crops with conventional and organic farming, 2003/556/EC (notified under document number C(2003) 2624). Official J Eur Union L189, 36-47. Fonseca, A.E., Westgate, M.E., 2005. Relationship between desiccation and viability of maize pollen. Field Crops Res. 94, 114-125. Goggi, A.S., Caragea, P., Lopez-Sanchez, H., Westgate, M., Arritt, R., Clark, C.A., 2006. Statistical analysis of outcrossing between adjacent maize kernel production fields. Field Crops Res. 99, 147-157. Goggi, A.S., Lopez-Sanchez, H., Caragea, P., Westgate, M., Arritt, R., Clark, C.A., 2007. Gene flow in maize fields with different local pollen densities. Int. J. Biometerol. 51, 493-503. Gruère, G.P., Rao, S.R., 2007. A review of international labeling policies of genetically modified food to evaluate India's proposed rule. AgBioForum 10, 51-64. Gustafson, D.I., Brants, I.O., Horak, M.J., Remund, K.M., Rosenbaum, E.W., Soteres, J.K., 2006. Empirical modeling of genetically modified maize grain production practices to achieve European Union labeling thresholds. Crop Sci. 46, 2133-2140. Hagan, M.T., Demuth, H.B., Beale, M.H., 1996. Neural network design. Thomson Learning, Singapore. Halsey, M.E., Remund, K.M., Davis, C.A., Qualls, M., Eppard, P.J., Berberich, S.A., 2005. Isolation of maize from pollen-mediated gene flow by time and distance. Crop Sci. 45, 2172-2185. Henry, C., Morgan, D., Weekes, R., Daniels, R., Boffey, C., 2003. Farm scale evaluations of GM crops: Monitoring gene flow from GM crops to non-GM equivalent crops in the vicinity (contract reference EPG 1/5/138). Part I: Forage maize. Final Report, 2000/2003. Dep. for Environment, Food and Rural Affairs, London. Holst-Jensen, A., De loose, M., Van Den Eede, G., 2006. Coherence between legal requirements and approaches for detection of genetically modified organisms (GMOs) and their derived products. J. Agric. Food Chem. 54, 2799-2809. James, C., 2014. Executive summary of Global Status of Commercialized Biotech/GM Crops: 2013. (ISAAA Brief 46). Ithaca, NY: International Service for the Acquisition of Agri-biotech Applications (ISAAA). Jarosz, N., Loubet, B., Huber, L., 2004. Modelling airborne concentration and deposition rate of maize pollen. Atmos. Environ. 38, 5555-5566. Jarvis, D. I., Hodgkin, T., 1999. Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol. Ecol. 8, s159-s173. Johnson, R.A., Wichern, D.W., 2002. Applied multivariate statistical analysis, fifth ed. Pretice-Hall, pp. 426-532. Kallel, R., Cottrell, M., Vigeneron, V., 2002. Bootstrap for neural model selection. Neurocomputing 48, 175-183. Käppeli, O., Auberson, L., 1998. How safe is safe enough in plant genetic engineering? Trends Plant Sci. 3, 276-281. Kaul, M., Hill, R.L., Walthall, C., 2005. Artificial neural networks for corn and soybean yield prediction. Agr. Syst. 85, 1-18. Klein, E.K., Lavigne, C., Foueillass, X., Gouyon, P.-H., Larédo, C., 2003. Corn pollen dispersal: quasi-mechanistic model and field experiments. Ecol. Monogr. 73, 131- 150. Klein, E.K., Lavigne, C., Picault, H., Renard, M., Gouyon, P.-H., 2006. Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. J. Appl. Ecol. 43, 141-51. Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI , 14, 1137-1145. La Rocca, M., Perna, C., 2005. Variable selection in neural network regression models with dependent data: a subsampling approach. Comput. Stat. Data An., 48, 415-429. Langhof, M., Hommel, B., Hüsken, A., Njontie, C., Schiemann, J., Wehling, P., Wilhelm, R., Rühl, G., 2010. Coexistence in maize: Isolation distance in dependence on conventional maize field depth and separate edge harvest. Crop Sci. 50, 1496-1508. Langhof, M., Hommel, B., Hüsken, A., Schiemann, J., Wehling, P., Wilhelm, R., Rühl, G., 2008. Coexistence in maize: Do nonmaize buffer zones reduce gene flow between maize fields? Crop Sci. 48, 305-316. Le Bail, M., Lecroart, B., Gauffreteau, A., Angevin, F., Messéan, A., 2010. Effect of the structural variables of landscapes on the risks of spatial dissemination between GM and non-GM maize. Europ. J. Agron. 33, 12- 23. Loos, C., Seppelt, R., Meier-Bethke, S., Schiemann, J., Richter, O., 2003. Spatially explicit modelling of transgenic maize pollen dispersal and cross-pollination. J. Theor. Biol. 225, 241-255 Luna, V., Figueroa, M., Baltazar, M., Gomez, L., Townsend, R., Schoper, J.B., 2001. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci. 41, 1551-1557. Ma, B.L., Subedi, K.D., Reid, L.M., 2004. Extent of cross-fertilization in maize by pollen from neighboring transgenic hybrids. Crop Sci. 44, 1273-1282. Marceau, A., Loubet, B., Andrieu, B., Durand, B., Foueillassar, X., Huber, L., 2011. Modelling diurnal and seasonal patterns of maize pollen emission in relation to meteorological factors. Agric. For. Meteorol. 151, 11-21. Martens, H., Næs, T., 1989. Multivariate calibration, fourth ed. Wiley, Chichester, pp. 90-146. Matsuo, K., Amano, K., Shibaike, H., Yoshimura, Y., Kawashima, S., Uesugi, S., Misawa, T., Miura, Y., Ban, Y., Oka, M., 2004. Pollen dispersal and outcrossing in Zea mays populations: a simple identification of hybrids detected by xenia using conventional corn in simulation of transgene dispersion of GM corn. In: Proceedings of the 8th International Symposium on the Biosafety of Genetically Modified Organisms, Montpellier, 26-30 September 2004, pp. 282. Mercer, K.L., Wainwright, J.D., 2008. Gene flow from transgenic maize to landraces in Mexico: An analysis. Agr. Ecosyst. Environ. 123,109-115. Messeguer, J., 2003. Gene flow assessment in transgenic plants. Plant Cell Tissue Organ Cult. 73, 201-212. Messeguer, J., Peñas, G., Ballester, J., Bas, M., Serra, J., Salvia, J., Palaudelmàs, M., Melé, E., 2006. Pollen-mediated gene flow in maize in real situations of coexistence. Plant Biotechnol. J. 4, 633-645. Nielsen, R.L. 2006. A problem with 'Bouquets.' Purdue Univ. Online at http://www.kingcorn.org/news/articles.06/Bouquets-0912.html. O'Neal, M.R., Engel, B.A., Ess, D.R., Frankenberger, J.R., 2002. Neural network prediction of maize yield using alternative data coding algorithms. Biosys. Eng. 83, 31-45. Olden J.D., Jackson, D.A., 2002. Illuminating the 'black box': a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 154, 135-150. Özesmi, S.L., Tan, C.O., Özesmi, U., 2006. Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecol. Model. 195, 83-93. Palaudelmàs, M., Melé, E., Monfort, A., Serra, J., Salvia, J., Messeguer, J., 2012. Assessment of the influence of field size on maize gene flow using SSR analysis. Transgenic Res. 21, 471-483. Palaudelmàs, M., Melé, E., Peñas, G., Pla, M., Nadal, A., Serra, J., Messeguer, J., 2008. Sowing and flowering delays can be an efficient strategy to improve coexistence of genetically modified and conventional maize. Crop Sci. 48,2404-2413. Palaudelmàs, M., Peñas, G., Melé, E., Serra, J., Salvia, J., Pla, M., Nadal, A., Messeguer, J., 2009. Effect of volunteers on maize gene flow. Transgenic Res. 18, 583-594. Paul, L., Angevin, F., Collonnier, C., Messéan, A., 2012. Impact of gene stacking on gene flow: the case of maize. Transgenic Res. 21, 243-256. Pla, M., La Paz, J.-L., Peñas, G., García, N., Palaudelmàs, M., Esteve, T., Messeguer, J., Melé, E., 2006. Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study. Transgenic Res. 15, 219-228. Popescu, S., Leprince, F., Ioja-Boldura, O., Mărutescu, A., Sabău, I., Badea, E.M., 2010. Quantification of pollen mediated gene flow in maize. Ron. Biotech. Lett. 15, 5351-5360. Rühl, G., Hommelb, B., Hüskenc, A., Masteld, K., Schiemannc, J., Wehlinge, P., Langhof, M., 2011. Coexistence in maize: effect on pollen-mediated gene flow by conventional maize border rows edging genetically modified maize fields. Crop Sci. 51, 1748-1756. Rühl, G., Langhof, M., 2011. Coexistence in maize: effect of the genetically modified maize field depth on pollen-mediated gene flow. Crop Sci. 51, 2186-2193. Sanvido, O., Widmer, F., Winzeler, M., Streit, B., Szerencsits, E., Bigler, F., 2008. Definition and feasibility of isolation distances for transgenic maize cultivation. Transgenic Res. 17, 317-335. Sausse, C., Le Bail, M. , Lecroart, B., Remy, B., Messéan, A., 2013. How to manage the coexistence between genetically modified and conventional crops in grain and oilseed collection areas? Elaboration of scenarios using role playing games. Land Use Policy 30, 719-729. Schwarz, G., 1978. Estimating the dimension of a model. Ann. Stat., 6, 461-464. Sousa, S.I.V., Martins, F.G., Alvim-Ferraz, M.C.M., Pereira, M.C., 2007. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ. Modell. Softw., 22, 97-103. Stevens, W., Berberich, S., Sheckell, P., Wiltse, C., Halsey, M., Horak, M., Dunn, D., 2004. Optimizing pollen confinement in maize grown for regulated products. Crop Sci. 44, 2146-2153. Stewart, C.N., Halfhill, M.D., Warwick, S.I., 2003. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet. 4, 806-817. Thiagarajan, A., Lada, R.R., Muthuswamy, S., Adams, A., 2013. Agroclimatology-based yield model for carrot using multiple linear regression and artificial neural networks. Agron. J. 105, 863-873. Trifa, Y., Zhang, D., 2004. DNA Content in Embryo and Endosperm of Maize Kernel (Zea mays L.): impact on GMO quantification. J. Agric. Food Chem. 52, 1044-1048. Tufto, J., Engen, S., Hindar, K., 1997 Stochastic dispersal processes in plant populations. Theor. Popul. Biol. 52, 16-26. Uno, Y., Prasher, S.O., Lacroix, R., Goel, P.K., Karimi, Y., Viau, A., Patel, R.M., 2005. Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data. Comput. Electron. Agric. 47, 149-161. Van De Wiel, C.C.M., Groeneveld, R.M.W., Dolstra1, O., Kok, E.J., Scholtens, I.M.J., Thissen, J.T.N.M., Smulders, M.J.M., Lotz, L.A.P., 2009. Pollen-mediated gene flow in maize tested for coexistence of GM and non-GM crops in the Netherlands: effect of isolation distances between fields. NJAS-Wagen. J. Life Sci. 56, 405-423. Viaud, V., Monod, H., Lavigne, C., Angevin, F., Adamczyk, K., 2008. Spatial sensitivity of maize gene-flow to landscape pattern: a simulation approach. Landscape Ecol., 23, 1067-1079. Viljoen, C., Chetty, L., 2011. A case study of GM maize gene flow in South Africa. Environ. Sci. Europe 23, 1-8. Vogler, A., Bertossa, M., Aulinger-Leipner, I., Stamp, P., 2010. Weather effects on cross-pollination in maize. Crop Sci. 50, 713-717. Vogler, A., Eisenbeiss, H., Aulinger-Leipner, I., Stamp, P., 2009a. Impact of topography on cross-pollination in maize (Zea mays L.). Eur. J. Agron. 31,99-102. Vogler, A., Wettstein-Bättig, M., Aulinger-Leipner, I., Stamp, P., 2009b. The airborne pollen flow of maize (Zea mays L.) in a multi-crop designed field plot. Agric. For. Meteorol. 149, 1776-1780. Wagenmakers, E.J., Farrell, S., 2004. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192-196. Warwick, S.I., Beckie, H.J., Hall, L.M., 2009. Gene Flow, Invasiveness, and Ecological Impact of Genetically Modified Crops. Ann. NY Acad. Sci. 1168, 72-99. Watanabe, S., Kamada, H., Ezura, H., 2006. Effect of a special screened greenhouse covered by fine mesh on maize outcrossing. Plant Biotechnol. J. 23, 309-316. Weber, W.E., Bringezu, T., Broer, I., Eder, J., Holz, F., 2007. Coexistence between GM and Non-GM maize crops─tested in 2004 at the field scale level (Erprobungsanbau 2004). J. Agron. Crop Sci. 193, 79-92. Weekes, R., Allnutt, T., Boffey, C., Morgan, S., Bilton, M., Daniels, R., Henry, C., 2007. A study of crop-to-crop gene flow using farm scale sites of fodder maize ( Zea mays L.) in the UK. Transgenic Res. 16, 203-211. Wehrens, R., Putter, H., Buydens, L., 2000. The bootstrap: a tutorial. Chemometrics Intell. Lab. Syst. 54, 35-52. Yamamura, K., 2004. Dispersal distance of corn pollen under fluctuating diffusion coefficient. Popul. Ecol. 46, 87-101.
摘要: 
在過去的二十年,許多基因改造 (genetically modified, GM) 作物已被成功開發上市,並進入商業化的田間生產。種植在開放田間的基因改造作物,可能與野生近緣種或傳統非基改品種的作物發生雜交,導致基因流和基因污染。由於花粉傳播是影響玉米基因流的主要因素,瞭解在田野中發生異交 (cross-pollination,CP) 的程度,可以幫助建立基因改造與非基因改造作物間,共存的隔離距離和田區種植的配置。本研究於 2009 至 2011 年間,在台灣本土進行實際玉米田間試驗,考慮七種不同的場景佈局,調查田間種植時玉米花粉流的程度。試驗田區設置位於台中霧豐的農業試驗所 (Taiwan Agricultural Research Institute, TARI) (24°1'N,120°41'E),及位於嘉義朴子的台南區農業改良場 (Tainan District Agricultural Research and Extension Station , TNDAIS) 朴子分場 (23°47'N, 120°26'E)。利用此本土田間試驗的異交率資料,以及數種非線性和擬機械模式,建立花粉接受親與花粉貢獻親間之距離與異交程度的關係。此外,在模式建立同時,也採用重複抽樣的技術,進行模式的評估及驗證。在第三章中,NIG (normal inverse Gaussian)模式在所使用的二維與一維模式中,擁有最好的建模表現。根據保守的結果,田區模擬的異交汙染率在 95%信心水準,小於 0.9%的情況下 (kernel-number-based量測法),其所需的距離分別為 NIG 模式的 25 公尺。此外,在 95%信心水準小於 3%與 5%的情況下 (kernel-number-based 量測方法),其所需的距離為 NIG 模式的 15 與 10 公尺。在第四章中,我們使用三種具有不同的輸入的類神經網絡 (artificial neural network, ANN)模型建立花粉飄散模式:原始的輸入神經網絡 (neural network,NN)、主成分神經網絡 (principal components neural network, PCNN)、淨最小平方
神經網絡 (partial least squared neural network, PLSNN)模型。根據 ANN 模型田區 模 擬 結 果 , 異 交 汙 染 率 在 95% 信 心 水 準 小 於 0.9% 的 情 況 下(kernel-number-based 量測法),其所需的距離分別為 NN 模型的 40 公尺、PCNN模型與 PLSNN 模型的 35 公尺。在小於 3%的情況下 (kernel-number-based 量測
法),其所需的距離分別為在 NN 模式與 PCNN 模式的 30 公尺、以及 PLSNN 模式的 35 公尺。在 95%信心水準小於 5%的情況下 (kernel-number-based 量測法),其所需的距離分別為在 NN 模式與 PLSNN 模式的 30 公尺、以及 PCNN 模式的25 公尺。此外,我們亦發展了一套方法,可應用於解釋 ANN 模型的黑盒子,根據本研究的所建立的 3 種 ANN 模型,其模型訓練後的記憶特徵可藉由因素分析(factor analysis) 的結果進行說明與解釋。綜合各項結果,同時考慮模型效率和保守的預測隔離距離,本研究建議在大多數的情況下,在 95%信心水準下,30 公尺、35 公尺、40 公尺的隔離距離即分別足以維持非基因改造玉米田區收穫物,基改基因污染率小於 5%、3%與 0.9%的門檻。

In the past two decades, numerous genetically modified (GM) crops have been successfully developed and released into commercial production. GM crops planted in an open field can outcross with feral or conventional crops, leading to gene flow and gene contamination. Because pollen dispersal is the major factor that affects gene flow in maize, the exploration of cross-pollination (CP) in the field may facilitate the establishment of the isolation distance and field arrangements to allow the coexistence of GM and non-GM crops. In this study, we conducted local field experiments to measure pollen flow in maize by using seven scenarios of diverse field-layout patterns during 2009 and 2011. The
experimental fields were located at Wufeng (24°1'N, 120°41'E) managed by the Taiwan Agricultural Research Institute (TARI) and at Puzih (23°47'N, 120°26'E)
belonging to the Potzu Branch Station of the Tainan District Agricultural Research and Extension Station (TNDAIS).
The CP rates collected from local maize field trials were used to establish the relationship between the extent of CP in recipient and distances from the pollen source by using several nonlinear and quasi-mechanistic models. In addition, the resampling method was used for both evaluating and verifying the models. The normal inverse Gaussian (NIG) model had a better performance among the 2D and 1D model. According to the conservative result, the 95% upper confidence limits of
simulated CP rates were below 0.9% (kernel-number-based approach) at the isolation distance of 25 m on the basis of the NIG model. Additionally, the simulated CP rates were <3% and <5% beyond 15 m and 10 m for NIG model at a 95% confidence level, respectively. In chapter 4, we used three artificial neural network (ANN) models featuring
distinct inputs to establish the pollen dispersal models: the neural network (NN), principal components neural network (PCNN), and partial least squared neural network (PLSNN) models. Our analyses revealed that the 95% upper confidence limits of the CP rate (as per the kernel-number-based approach) in field simulations
were <0.9% at the isolation distances of 40 m, 35 m, and 35 m predicted using the NN, PCNN, and PLSNN models, respectively. The simulated CP rates were <3% at the
isolation distances of 30 m, 30 m, and 35 m predicted by NN, PCNN, and PLSNN, respectively. The simulated CP rates predicted using the NN, PCNN, and PLSNN models were <5% at a 95% confidence level at distances greater than 30 m, 25 m, and 30 m, respectively. Furthermore, we developed a technique to interpret the black box of ANN model, and the result showed that various characteristics of the data can be explained by using factor analysis in 3 ANN models.
In conclusion, to consider both model performance and conservative isolation distance in most cases, a recommended isolation distances of 30 m, 35 m, and 40 m
are adequate for maintaining the GM contamination rate of the total harvest of a field at <5%, <3%, and <0.9% at a 95% confidence level, respectively.
URI: http://hdl.handle.net/11455/89535
其他識別: U0005-2606201511381500
Rights: 同意授權瀏覽/列印電子全文服務,起公開。
Appears in Collections:農藝學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-8095031303-1.pdf9.95 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.