Please use this identifier to cite or link to this item:
標題: 紫錐菊族群(Echinacea pupurea)總酚類化合物之輪迴選種
Recurrent selection of total phenol content in Echinacea purpurea population
作者: Syue-Hua Chen
關鍵字: Echinacea;total phenol;recurrent selection;紫錐菊;總酚類化合物;輪迴選種
引用: 吳佳蓉。2012。利用外表型及植物化學成分進行紫錐菊(Echinacea purpurea L. Moench)的混合選拔。國立中興大學農藝學系碩士論文。台中。 吳孟禧。2007。紫錐菊原料品質評估之研究。國立中興大學農藝學系碩士論文。台中。 林資哲。2003。紫錐菊咖啡酸衍生物含量與抗氧化能力分析。國立中興大學農藝學系碩士論文。台中。 金威仲。2012。紫錐菊不同集團特性之比較。國立中興大學農藝學系碩士論文。台中。 張世政。2005。台灣地區紫錐菊生產與品質評估之研究。國立中興大學農藝學系碩士論文。台中。 莊淑貞。2008。RAPD 及 AFLP 分子標誌技術在紫錐菊遺傳變異之研究。國立中興大學農藝學系博士論文。台中。 Abbsi, B. H., C. L. Tian, S. J. Murch, P. K. Sazena, and C. Z. Liu. 2007. Light-enhances caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea. Plant Cell Rep. 26: 1367-1372. Acosta-Estrada, B. A., J. A. Gutiérrez-Uribe, and S. O. Serna-Saldívar. 2014. Bound phenolics in foods, a review. Food Chem. 152: 46-55. Adom, K. K. and R. H. Liu. 2002. Antioxidant activity of grains. J. Agric. Food Chem. 50: 6182-6187. Balasundram, N., K. Sundram, snd S. Sammam. 2006. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99: 191-203. Barnes, J., L. A. Anderson, S. Gibbons, and J. D. Phillipson. 2005. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 57: 929-954. Barrett, B. 2003. Medicinal properties of Echinacea: a critical review. Phytomedicine 10: 66-86. Bauer, R. 1999. Chemistry, analysis and immunological investigations of Echinacea phytopharmaceuticals. In 'Immunomodulatory Agents from Plants', ed. H. Wagner, pp. 41-88. Berlin: Birkhäuser. Bauer, R. and H. Wagner. 1991. Echinacea species as potential immunostimulatory drugs. In 'Economic and medicinal plant research', eds. H. Wagner, and N. R. Farnsworth, pp. 253-321. New York: Academic Press. Bauer, R. and P. Remiger. 1989. TLC and HPLC analysis of alkamides in Echinacea drugs. Planta Med. 55: 367-371. Bergeron, C., S. Gafner, L. L. Batcha, and K. Angerhofer. 2002. Stabilization of caffeic acid derivatives in Echinacea purpurea L. glycerin extract. J. Agric. Food Chem. 5: 3967-3970. Berti, M., R. Wilckens, S. Fischer, and F. Hevia. 2002. Effect of harvest season, nitrogen, phosphorus and potassium on root yield, echinacoside and alkamides in Echinacea angustifolia L. in Chile. Acta Hort. 576: 303-310. Binns, S. E., J. F. Livesey, J. T. Arnason, and B. R. Baum. 2002. Phytochemical variation in Echinacea from roots and flowerheads of wild and cultivates populations. J. Agric. Food Chem. 50: 3673-3687. Chen, C. L., S. C. Zhang, and J. M. Sung. 2009. Caffeoyl phenols and alkamides of cultivated Echinacea purpurea and Echinacea atrorubens var. paradoxa. Pharm. Biol. 47: 835-840. Chhipa, N. M. R., K. M. Patel, S. P. Ganchi, and D. J. Sen. 2014. Chicoric acid and its analogues as an anti-HIV integrase agents. WJPPS. 3: 2321-2335. Chu, Y. F., J. Sun, X. Wu, and R. H. Liu. 2002. Antioxidant and antiproliferative activities of common vegetables. J. Agric. Food Chem. 50: 6910-6916. Classen, B., S. Thude, W. Blaschek, M. Wack, and C. Bodinet. 2006. Immunomodulatory effects of arabinogalactan-proteins from Baptisia and Echinacea. Phytomedicine 13: 688-694. Connor, A. M., J. J. Luby, and C. B. S. Tong. 2002a. Genotypic and environmental variation in antioxidant activity, total phenolic content, and anthocyanin content among blueberry cultivars. J. Amer. Soc. Hort. Sci. 127: 89-97. Connor, A. M., J. J. Luby, and C. B. S. Tong. 2002b. Variation and heritability estimates for antioxidant activity, total phenolic content, and anthocyanin content in blueberry progenies. J. Amer. Soc. Hort. Sci. 127: 82-88. Connor, A. N., M. J. Stephens, H. K. Hall, and P. A. Alspach. 2005. Variation and heritabilities of antioxidant activity and total phenolic content estimated from a red raspberry factorial experiment. J. Amer. Soc. Hort. Sci. 130: 403-411. Cruz, I., J. J. Cheetham, J. T. Arnason, J. E. Yack, and M. L. Smith. 2014. Alkamides from Echinacea disrupt the fungal cell wall-membrane complex. Phytomedicine 21: 435-442. Dalby-Brown, L., H. Barsett, A. K. R. Landbo, A. S. Meyer, and P. M?lgaard. 2005. Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on vitro oxidation of human low-density lipoproteins. J. Agric. Food Chem. 53: 9413-9423. Doohan, F. M., J. Brennan, and B. M. Cooke. 2003. Influence of climatic factors on Fusarium species pathogenic to cereals. Eur. J. Plant Pathol. 109: 755-768. El-Sayed, A. A., A. S. Shalaby, H. El-Hanafy, and T. M. Abd El-Razik. 2012. Effects of chemical fertilizers on growth and active constituents of Echinacea paradoxa L. plants. Journal of Horticultural Science and Ornamental Plants 4: 125-133. Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. 4th ed. London: Prentice Hall. Hallauer, A. R. and L. L. Darrah. 2008. Compendium of recurrent selection methods and their application. Plant Sci. 3: 1-33. He, X. G., L. Z. Lin, M. W. Bernart, and L. Z. Lian. 1998. Analysis of alkamides in root and achenes of Echinacea purpurea by liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A 815: 205-211. Hu, C. and D. D. Kitts. 2000. Studies on the antioxidant of Echinacea root extract. J. Agric. Food Chem. 48: 1466-1472. Hudson, J. B. 2012. Applications of the phytomedicine Echinacea purpurea (purple coneflower) in infectious diseases. J. Biomed. Biotechnol. doi: 10.1155/2012/769896. Ji, L., P. Jiang, B. Lu, Y. Sheng, X. Wang, and Z. Wang. 2013. Chlorogenic acid, a dietary polyphenol, protects acetaminophen-induced liver injury and its mechanism. J. Nutr. Biochem. 24: 1911-1919. Jiratchariyakul, W. and G. B. Mahady. 2013. Overview of botanical status in EU, USA, and Thailand. Evid.-Based Compl. Alt. doi: 10.1155/2013/480128. Jun, N. J., K. C. Jang, S. C. Kim, D. Y. Moon, K. C. Seong, K. H. Kang, L. Tandang, P. H. Kim, S. K. Cho, and K. H. Park. 2007. Radical scavenging activity and content of cynarin (1,3-dicaffeoylquinic acid) in Artichoke (Cynara scolymus L.). J. Appl. Biol. Chem. 50: 244-248. Kim, H., T. D. Durance, C. H. Scaman, and D. D. Kitts. 2000. Retention of caffeic acid derivatives in dried Echinacea purpurea. J. Agric. Food Chem. 48: 4182-4186. Krochmal, R., M. Hardy, S. Bowerman, Q. Y. Lu, H. J. Wang, R. M. Elashoff, and D. Heber. 2004. Phytochemical assays of commercial botanical dietary supplements. Evid.-Based Compl. Alt. 1: 305-313. Lee, J. and C. F. Scagel. 2009. Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem. 115: 650-656. Letchamo, W. L., L. V. Polydeonny, N. O. Gladisheva, T. J. Arnason, A. J. Liversey, and D. V. C. Awang. 2002. Factors affecting Echinacea quality. In 'Trends in New Crops and New Uses', eds. J. Janick, and A. Whipkey, pp. 514-521. Alexandria: ASHS Press, Leuszler, H. K., V. J. Tepedino, and D. G. Alston. 1996. Reproductive biology of purple conflower in south-western North Dakota. Prairie Naturalist 28: 91-102. Li, J., M. A. Jongsma, and C. Y. Wang. 2014. Comparative analysis of pyrethrin content improvement by mass selection, family selection and polycross in pyrethrum [Tanacetum cinerariifolium (Trevir.) Sch. Bip.] populations. Ind. Crop Prod. 53: 268-273. Li, T. S. C. 1998. Echinacea: Cultivation and medicinal value. Herbology 8: 122-129. Lin, S. D., J. M. Sung, and C. L. Chen. 2011. Effect of dying and storage conditions on caffeic acid derivatives and total phenolics of Echinacea purpurea grown in Taiwan. Food Chem. 125: 226-231. Mazza, G. and T. Cottrell. 1999. Volatile components of roots, stems, leaves, and flowers of Echinacea species. J. Agric. Food. Chem. 47: 3081-3085. McClosky, B. and S. D. Tanksley. 2013. The impact of recombination on short-term selection gain in plant breeding experiments. Theor. Appl. Genet. 126: 2299-2312. McGregor, R. L. 1968. The taxonomy of genus Echinacea (Comositae). Univ. Kansas Sci. Bull. 48: 113-142. Montanari, M., E. Degl'Innocenti, R. Maggini, S. Pacifici, A. Pardossi, and L. Guidi. 2008. Effect of nitrate fertilization and saline stress on the contents of active constituents of Echinacea angustifolia DC. Food Chem. 107: 1461-1466. Mrozikiewicz, P. M., A. Bogacz, M. Karasiewicz, P. L. Mikolajczak, M. Ozarowski, A. Seremak-Mrozikiewicz, B. Czerny, T. Bobkiewicz-Kozlowska, and E. Grzeskowiak. 2010. The effect of standardized Echinacea purpurea extract on rat cytochrome P450 expression level. Phytomedicine 17: 830-833. Murch, S. J., S. E. Peiris, W. L. Shi, S. M. A. Zobayed, and P. K. Saxena. 2006. Genetic diversity in seed populations of Echinacea purpurea controls the capacity for regeneration, route of morphogenesis and phytochemical composition. Plant Cell Rep. 25: 522-532. Olarte, A., N. Mantri, G. Nugent, and E. C. K. Pang. 2013. Subtracted diversity array identifies novel molecular markers including retrotransposons for fingerprinting Echinacea species. Plos one 8: 1-12. Oomah, B. D., D. Dumon, A. Cardador-Martínez, and D. V. Godfrey. 2006. Characteristics of Echinacea seed oil. Food Chem. 96: 304-312. Parmenter, G. A. and R. P. Littlejohn. 1997. Planting density effects on root yield of purple conflower (Echinacea purpurea (L.) Moench). New Zeal. J. Crop Hort. 25: 169-175. Pawlaczyk, I., L. Czerchawski, W. Pilecki, E. Lamer-Zarawska, and R. Gancarz. 2009. Polyphenolic-polysaccharide compounds from selected medicinal plants of Asteraceae and Rosaceae familes: Chemical characterization and blood anticoagulant activity. Carbohyd. Polym. 77: 568-575. Pellati, F., S. Benvenuti, L. Magro, M. Melegari, and F. Soragni. 2004. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharmaceut. Biomed. 35: 289-301. Pellati, F., S. Benvenuti, M. Melegari, and T. Lasseigne. 2005. Variability in the composition of anti-oxidant compounds in Echinacea species by HPLC. Phytochem. Anal. 16: 77-85. Pellati, F., S. Calò, S. Benvenuti, B. Adinolfi, P. Nieri, and M. Melegari. 2006. Isolation and structure elucidation of cytotoxic polyacetylenes and polyenes from Echinacea pallida. Phytochemistry 67: 1359-1364. Percival, S. S. 2000. Use of Echinacea in Medicine. Biochem. Pharmacol. 60: 155-158. Posselt, U. K. 2010. Breeding methods in cross-pollinated species. In 'Fodder Crops and Amenity Grasses', eds. B. Boller, U. K. Posselt, and F. Veronesi, pp. 39-87. New York: Springer. Preciado-Ortiz, R. E., S. García-Lara, S. Ortiz-Islas, A. Ortega-Corona, and S. O. Serna-Saldivar. 2013. Response of recurrent selection on yield, kernel oil content and fatty acid composition of subtropical maize populations. Field Crop Res. 142: 27-35. Qu, L. and M. P. Widrlechner. 2012. Reduction of seed dormancy in Echinacea pallida (Nutt.) Nutt. by in dark seed selection and breeding. Ind. Crop Prod. 36: 88-93. Roesler, J., A. Emmendörffer, C. Steinmüller, B. Luettig, H. Wagner, and M. L. Lohmann-Matthes. 1991. Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to test subjects mediates activation of phagocyte system. Int. J. Immunopharmaco. 13: 931-941. Romero, F. R., K. Delate, D. J. Hannapel, Y. Liu, and P. Murphy. 2010. Horticultural and biochemical variations due to seed source and production methods in three Echinacea spp. Journal of Herbs, Spices and Medicinal Plants 16: 167-192. Rosulj, M., S. Trifunovic, and I. Husic. 2002. Nine cycles of mass selection for increasing oil content in two maize (Zea mays L.) synthetics. Genet. Mol. Biol. 25: 449-461. Salas Fernandez, M. G., P. W. Becraft, Y. Yin, and T. Lübberstedt. 2009. From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci. 14: 454-461. Sedler-Lozykowska, K. and J. Dabrowska. 2003. Yield and polyphenolic acids content in purple coneflower (Echinacea purpurea Moench.) at different growth stage. Journal of Herbs, Species and Medicinal Plants 10: 7-12. Sethi, A., M. S. Bons, and V. K. Dilawari. 2008. Realized heritability and genetic analysis of insecticide resistance in whitefly, Bemisia tabaci (Genn.). Journal of Entomology 5: 1-9. Stanisavljević, I., S. Stojičević, D. Veličković, V. Veljković, and M. Lazić. 2009. Antioxidant and antimicrobial activities of Echinacea (Echinacea purpurea L.) extracts obtained by classical and ultrasound extraction. Chin. J. Chem. Eng. 17: 478-483. Stephens, L. C. 2008. Self-incompatibility of Echinacea purpurea. Hortscience 43: 1350-1354. Stuart, D. L. and R. B. H. Wills. 2000. Alkamide and cichoric acid levels in Echinacea purpurea tissues during plant growth. J. Herbs. Spices Med. Plants 7: 91-101. Sun, J., Y. F. Chu, X. Wu, and R. H. Liu. 2002. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem. 50: 7449-7454. Taga, M. S., E. E. Miller, and D. E. Pratt. 1984. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc.61: 928-931. Thude, S. and B. Classen. 2005. High molecular weight constituents from roots of Echinacea pallida: An arabinogalactan-protein and an arabinan. Phytochemistry 66: 1026-1032. Thygesen, L., J. Thulin, A. Mortensen, L. H. Skibsted, and P. Molgaard. 2007. Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea, alone and in combination. Food Chem. 101: 74-81. Vanzo, A., R. Cecotti, U. Vrhovsek, A. M. Torres, F. Mattivi, and S. Passamonti. 2007. The fate of trans-caftaric acid administered into the rat stomach. J. Agric. Food Chem. 55: 1604-1611. Vimalanathan, S. L. Kang, V. T. Amiguet, J. Livesey, J. T. Arnason, and J. Hudson. 2005. Echinacea purpurea aerial parts contain multiple antiviral compounds. Pharm. Biol. 43: 740-745. Wack, M. and W. Blaschek. 2006. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots. Carbohyd. Res. 341: 1147-1153. Wagner, H., H. Stuppner, W. Schäfer, and M. Zenk. 1988. Immunologically active polysaccharides of Echinacea purpurea cell cultures. Phytochemistry 27: 119-126. Wang, S. Y. and W. Zheng. 2001. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agr. Food Chem. 49: 4977-4982. Wang, S. Y., J. A. Bruce, and J. L. Maas. 2003. Elevated carbon dioxide increases contents of antioxidant compounds in field-growth strawberries. J. Agr. Food Chem. 51: 4315-4320. Wills, R. B. H. and D. L. Stuart. 2000. Effect of handling and storage on alkamides and cichoric acid in Echinacea purpurea. J. Sci. Food Agr. 80: 1402-1406. Woelkart, K. and R. Bauer. 2007. The role of alkamides as an active principle of Echinacea. Planta Med. 73: 615-623. Wu, C. H., H. N. Murthy, E. J. Hahn, H. L. Lee, and K. Y. Paek. 2008. Efficient extraction of caffeic acid derivatives from adventitious roots of Echinacea purpurea. Czech J. Food Sci. 26: 254-258. Xu, C. G., T. X. Tang, R. Chen, C. H. Liang, X. Y. Liu, C. L. Wu, Y. S. Yang, D. P. Yang, and H. Wu. 2014. A comparative study of bioactive secondary metabolite production in diploid and tetraploid Echinacea purpurea (L.) Moench. Plant Cell Tiss. Organ Cult. 116: 323-332. Yabe, S., R. Ohsawa, and H. Iwata. 2013. Potential of genomic selection for mass selection breeding in annual allogamous crops. Crop Sci. 53: 95-105. Yousef, R. M. M., S. E. Khalil, and N. A. M. El-Said. 2013. Response of Echinacea purpurea L. to irrigation water regime and biofertilization in sandy soils. World Appl. Sci. J. 26: 771-782. Yu, H. C. and M. Kaarlas. 2004. Popularity, diversity, and quality of Echinacea. In 'The genus Echinacea.', ed. S. Miller, pp. 29-52. Boca Raton: CRC Press. Zhao, Q., J. Gao, W. Li, and D. Cai. 2010. Neurotrophic and neurorescue effects of echinacoside in the subacute MPTP mouse model of Parkinson's disease. Brain Res. 1346: 224-236.
紫錐菊(Echinacea spp.)為近年來備受矚目的藥用作物之一,其次級代謝物具有免疫刺激、抗病毒及抗菌等活性。紫錐菊主要的藥理活性成分,分別是類苯基丙烷(phenylpropanoids)、烷醯胺(alkamides)、多醣體(polysaccharides)及醣蛋白(glycoproteins)。類苯基丙烷為酚類(phenolics)化合物,紫錐菊最主要的類苯基丙烷為咖啡酸衍生物(caffeic acid derivatives),咖啡酸衍生物之含量為評估紫錐菊藥用品質的重要指標。由於紫錐菊為異交作物,其後代具有極大的遺傳變異,可透過混合選拔(mass selection)改善其品質。本試驗以 Echinaceapurpurea 為材料,欲選拔出總酚類化合物含量且生物量高之集團,接續前人混合選拔之高、低總酚類化合物含量集團進行輪迴選拔,並將4 次輪迴選拔世代種植於同時間、環境下進行輪迴選拔效果評估及未來選拔方向。


Echinacea spp., known as purple coneflower, is one of the most popular medicinal herbs and has been cultivated widely. It's secondary metabolites have the activities of antimicrobial, antivirus and immunostimulatory. The major phytoactive constituents of Echinacea spp. are phenylpropanoids, alkamides, polysaccharides and glycoproteins. Phenylpropanoids classified as phenolic compounds, and the major phenylpropanoids in Echinacea spp. are caffeic acid derivatives. The content of caffeic acid derivatives is one of the quality indicators of Echinacea spp. In cross-pollinated crops like Echinacea spp., both the individual plants of the breeding population and their progeny in the population tend to be heterozygous. Recurrent selection is a straightford selection model that could be applicable for the development and maintenance of Echinacea spp. seed lines. In order to improve the quality of Echinacea spp. with high total phenolics content, 4 cycles of offspring are generated from mass selection and the selection efficiency were assessed.

The result demonstrates that it's effective to promote selection efficiency of high total phenolics population by roguing of low-phenolics individuals during vegetative stage and introducing pollination barrier during reproductive stage. Correlation analysis revealed that leaf total phenolics content was negatively correlated with plant height and floret number, but total phenolics content in floret showed positive correlation with plant height and floret number. Floret total phenolics content could be used as a screening indexes for improving quality and biomass of Echinacea spp. in the future.
其他識別: U0005-0906201516051500
Rights: 同意授權瀏覽/列印電子全文服務,2017-07-16起公開。
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101031213-1.pdf1.92 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.