Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89544
標題: 群集檢測在考慮檢測門檻下信賴區間之比較
Comparison of Confidence Interval for Proportions Estimated by Using Group Testing under the Existence of a Threshold of Detection
作者: Chih-Wei Chung
鐘智瑋
關鍵字: Group testing;Threshold of detection;Confidence interval;Coverage probability;Genetically modified crop.;群集檢測;檢測門檻;信賴區間;覆蓋機率;基因改造作物
引用: 蔣國司、鄧汀欽、賴信宏、王淑芬。2007。以群體測試結果估算種子 傳毒率的統計方法。植物病理學會刊。16:225-229。 //蔣國司、鍾文全、林上湖、賴信宏、王淑芬。2008。馬鈴薯病毒病感 染率之群體測試。植物病理學會刊。17(4):321-326。//蔣國司、賴信宏。2010。群集檢測方法在植物病理學上之應用。植 物病理學會刊。19(2):117-126。 //Agresti, A. 2002. Categorical Data Analysis. 2rd ed. New York: Wiley.pp. 1-21. //Agresti, A. and B. A. Coull. 1998. Approximate is better than exact for interval estimation of binomial proportions. Am. Stat. 52(2):119-126. //Agresti, A. and Y. Min. 2001. On small-sample confidence intervals for parameters in discrete distributions. Biometrics. 57:963-971. //Brown, L. D., T. T. Cai and A. DasGupta. 2001. Interval estimation for a binomial proportion. Stat. Sci. 16(2):101-117. //Brown, L. D., T. T. Cai and A. DasGupta. 2002. Confidence intervals for a binomial proportion and asymptotic expansions. Ann. Stat.30(1):160-201. //Casella, G. and R. Berger. 2001. Statistical Inference. 2rd ed. Pacific Grove, CA: Wadsworth. pp. 467-504. //Chen, C. L. and W. H. Swallow. 1990. Using group testing to estimate a proportion, and to test the binomial model. Biometrics. 46(4):1035-1046. //Dorfman, R. 1943. The detection of defective members of large populations. Ann. Math. Statist. 14(4):436-440. //García-Pérez, M. A. 2005. On the confidence interval for the binomial parameter. Qual. Quant. 39:467-481. //Hepworth, G. 1996. Exact confidence intervals for proportions estimated by group testing. Biometrics. 52(3):1134-1146. //Hepworth, G. 2004. Mid-p confidence intervals based on the likelihood ratio for proportions estimated by group testing. Aust. N. Z. J. Stat.46(3):391-405. //Hepworth, G. 2005. Confidence intervals for proportions estimated by group testing with groups of unequal size. J. Agric. Biol. Envir. Stat. 10(4):478-497. //Hepworth, G. 2013. Improved estimation of proportions using inverse binomial group testing. J. Agric. Biol. Environ. Stat. 18(1):102-119. //Hernández-Suárez, C. M., O. A. Montesinos-López, G. McLaren and J. Crossa. 2008. Probability models for detecting transgenic plants. Seed Sci. Res. 18(2):77-89. //Hung, M. and W. H. Swallow. 1999. Robustness of group testing in the estimation of proportions. Biometrics. 55(1):231-237. //Hwang, F. K. 1976. Group testing with a dilution effect. Biometrika.63(3):671-673. //Liu, S. C., K. S. Chiang, C. H. Lin and T. C. Deng. 2011. Confidence interval procedures for proportions estimated by group testing with groups of unequal size adjusted for overdispersion. J. Appl. Stat. 38(7):1467-1482. //Madden, L. V., G. Hughes and F. Van Den Bosch. 2007. The study of plant disease epidemics. American Phytopathological Society. St. Paul, MN. //Mano, J., Y. Yanaka, Y. Ikezu, M. Onishi, S. Futo, Y. Minegishi, K. Ninomiya, Y. Yotsuyanagi, F. Spiegelhalter and H. Akiyama. 2011.Practicable group testing method to evaluate weight/weight GMO content in maize grains. J. Agric. Food Chem. 59:6856-6863. //Millar, R. B. 2011. Maximum Likelihood Estimation and Inference: With Examples in R, SAS and ADMB. London: Wiley. pp. 256-285. //Montesinos-López, O. A., A. Montesinos-López, J. Crossa, K. Eskridge and C. M. Hernández-Suárez. 2010. Sample size for detecting and estimating the proportion of transgenic plants with narrow confidence intervals. Seed Sci. Res. 20(2):123-136. //Montesinos-López, O. A., A. Montesinos-López, J. Crossa and K. Eskridge. 2012. Sample size under inverse negative binomial group testing for accuracy in parameter estimation. PLoS ONE 7(3):e32250. //Newcombe, R. G. 1998. Two-sided confidence intervals for the single proportion: comparison of seven methods. Statist. Med. 17:857-872. //Pritchard, N. A. and J. M. Tebbs. 2010. Estimating disease prevalence using inverse binomial pooled testing. J. Agric. Biol. Environ. Stat.16(1):70-87. //Ridout, M. S. 1994. A comparison of confidence interval methods for dilution series experiments. Biometrics. 50(1):289-296. //Swallow, W. H. 1985. Group testing for estimating infection rates and probabilities of disease transmission. Phytopathology 75:882-889. //Tebbs, J. M. and C. R. Bilder. 2004. Confidence interval procedures for the probability of disease transmission in multiple-vector-transfer designs. J. Agric. Biol. Envir. Stat. 9(1):75-90. //Thompson, K. H. 1962. Estimation of the proportion of vectors in a natural population of insects. Biometrics. 18(4):568-578. //Yamamura, K. and A. Hino. 2007. Estimation of the proportion of defective units by using group testing under the existence of a threshold of detection. Commun. Stat. Simulat. 36(5):949-957.
摘要: 
在農業上群集檢測為一可降低成本與提高效率之檢測方法,此一 統計方法可應用於陽性反應個體的估計,其檢測流程如下,首先將欲 檢測的個體劃分為數個群集,再分別針對各個群集進行檢測,若檢測 結果為陽性反應,則稱該群集內至少有一陽性之檢測單位;若檢測結 果為陰性反應,則稱該群集內之所有檢測單位皆為陰性,此方法特別 適用於陽性反應個體數較少的情況;若當檢測方法本身存在有檢測門 檻,隨著群集內檢測單位數的增加,可能造成一群集被檢測為陽性的 機率遠低於其門檻值,進而導致偽陰性的檢測結果。本研究主要在探 討當使用群集檢測且帶有檢測門檻時,群集內檢測單位為陽性之機率 估計問題,討論與比較四種信賴區間方法(Wald、Likelihood Ratio、 Score 及 Exact),目的在探討此四種區間方法在群集檢測帶有檢測門 檻時表現之優劣處;其中信賴區間之評估準則,以覆蓋機率、期望寬 度及平均絕對偏差為標準,進而歸納出較佳之區間方法,以提供在實 際應用之參考。本研究並以兩組實際資料-轉基因玉米 CBH351 的檢 測與甜椒種子病毒 PMMoV 的檢測為例,來加以闡述所提供統計方法 之應用,相信此研究結果在農業實際應用上將有所助益。

In the investigation of agricultural science, provided that the level of infection in the population is not too large, considerable gains in efficiency may be made by group testing. Group testing is a method of pooling a number of units together and performing a single test on the resulting group. The procedure is particularly useful when the number of positive units is expected to be low and obtaining test material is cheap, but testing itself is expensive. In most cases, the classification of groups is binary, If a test is positive, it is assumed that at least one of the plants in the group is positive. Otherwise, it is assumed that all the plants are negative. When threshold of detection exists in analytical facilities and the group size is increased, it might lead to a false negative result, the probability of failing to detect defective items when in reality defective items exist. The objective of this study is to estimate the probability of defective individuals for any group size by using four confidence intervals (Wald, Likelihood Ratio, Score, and Exact methods) when a threshold of detection exists by using group testing. To evaluate and investigate the pros and cons of the four confidence intervals, coverage probability, expected width, and mean absolute deviation were used as the criteria. Finally, optimal confidence intervals will be recommended for providing the practical use. Moreover, the methods of this study were demonstrated and tested on the detections of genetically modified corn CBH351 and a seed-transmittable Pepper mild mottle virus (PMMoV) in pepper seeds. We believe that the results of the study will be useful for the practical application in agricultural science.
URI: http://hdl.handle.net/11455/89544
其他識別: U0005-2406201513300900
Rights: 同意授權瀏覽/列印電子全文服務,2015-07-16起公開。
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101031302-1.pdf1.85 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.