Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89547
標題: 茶枝生物炭施用對土壤溫室氣體釋放的研究
Effect of Camellia sinensis Biochar Application on Soil Greenhouse Gas Emission
作者: Po-Hsien Hsu
許伯銜
關鍵字: nitrous oxide;soil incubation;water filled pore space;氧化亞氮;土壤培育;充水孔隙
引用: 參考文獻 行政院環境保護署。2010。中華民國國家通訊。2版。台北市: 行政院環境保護署。pp. 24-40。 黃述鈞。2013。生物炭對茶園土壤溫室氣體釋放極為生物活性之影響。碩士論文。台北:國立台灣大學農業化學系 廖慶樑、劉禎祺。2005。合理化施肥專刊。台中市:行政院農業委員會農業試驗所。pp. 247-254。 賴朝明。1998。畜牧溫室氣體測定講習會論文暨講義集(二)實習操作。台北市:國立臺灣大學全球變遷研究中心。pp.14-22。 賴朝明、楊盛行。1998。氣候變遷對農作物生產之影響。台中市:行政院農業委員會農業試驗所。pp. 141-149。 羅秋雄。2005。作物施肥手冊。台北市:行政院農業委員會農糧署。pp. 34-36。 蘇登照。2009。台灣茶葉生產現況與輔導措施。農政與農情 201:68-72。 行政院環境保護署。2013。溫室氣體。台灣。         http://oldweb.epa.gov.tw/QuickFind/Q41.htm (accessed 2014/07/25) Akhter, M., A. Chughtai, and D. Smith. 1985. The structure of hexane soot I: Spectroscopic studies. Appl. Spectrosc. 39:143-153. Avdeev, V., S. Ruzankin, and G. Zhidomirov. 2005. Molecular mechanism of direct alkene oxidation with nitrous oxide: DFT analysis. Kinet.Catal. 46: 177-188. Ball, B., I. Crichton, and G. Horgan. 2008. Dynamics of upward and downward N2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence. Soil Till. Res. 101: 20-30. Ball, D. F. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci. 15: 84-92. Beare, M., E. Gregorich, and P. St-Georges. 2009. Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biol. Biochem. 41: 611-621. Brewer, C. E., R. Unger, K. Schmidt-Rohr, and R. C. Brown. 2011. Criteria to select biochars for field studies based on biochar chemical properties. Bioenerg. Res. 4: 312-323. Bruun, E. W., D. M?ller?St?ver, P. Ambus, and H. Hauggaard?Nielsen. 2011. Application of biochar to soil and N2O emissions: potential effects of blending fast?pyrolysis biochar with anaerobically digested slurry. Eur. J. Soil Sci. 62: 581-589. Castaldi, S., M. Riondino, S. Baronti, F. R. Esposito, R. Marzaioli, F. A. Rutigliano, F. P. Vaccari, and F. Miglietta. 2011. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere. 85: 1464-1471. Cavigelli, M. and G. Robertson. 2001. Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biol. Biochem. 33: 297-310. Clayton, H., I. McTaggart, J. Parker, L. Swan, and K. Smith. 1997. Nitrous oxide emissions from fertilised grassland: A 2-year study of the effects of N fertiliser form and environmental conditions. Biol. Fert. Soils 25: 252-260. Clough, T. J., J. E. Bertram, J. Ray, L. M. Condron, M. O'Callaghan, R. R. Sherlock, and N. S. Wells 2010. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci. Soc. Am. J. 74: 852-860. Davidson, E. A., M. Keller,H. E. Erickson, L. V. Verchot, and E. Veldkamp. 2000. Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides Using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. Biosci. 50: 667-680. Duku, M. H., S. Gu, and E. B. Hagan. 2011. Biochar production potential in Ghana—A review. Renew. Sust. Energ. Rev. 15: 3539-3551. Fowler, D., K. Pilegaard, M. A. Sutton, P. Ambus, M. Raivonen, J. Duyzer, D. Simpson, H. Fagerli, S. Fuzzi, J. K. Schjoerring, C. Granier, A. Neftel, I. S. A. Isaksen, P. Laj, M. Maione, P. S. Monks, J. Burkhardt, U. Daemmgen, J. Neirynck, E. Personne, R. Wichink-Kruit, K. Butterbach-Bahl, C. Flechard, J. P. Tuovinen, M. Coyle, G. Gerosa, B. Loubet, N. Altimir, L. Gruenhage, C. Ammann, S. Cieslik, E. Paoletti, T. N. Mikkelsen, H. Ro-Poulsen, P. Cellier, J. N. Cape, L. Horv?th, F. Loreto, ?. Niinemets, P. I. Palmer, J. Rinne, P. Misztal, E. Nemitz, D. Nilsson, S. Pryor, M. W. Gallagher, T. Vesala, U. Skiba, N. Br?ggemann, S. Zechmeister-Boltenstern, J. Williams, C. O'Dowd, M. C. Facchini, G. de Leeuw, A. Flossman, N. Chaumerliac, and J. W. Erisman. 2009. Atmospheric composition change: ecosystems–atmosphere interactions. Atmos. Environ. 43: 5193-5267. Gaunt, J. L. and J. Lehmann. 2008. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol. 42: 4152-4158. Glaser, B. 2007. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Phil. Trans. R. Soc. B: Biol.Sci. 362: 187-196. Hoshi, T. 2001. Growth promotion of tea trees by putting bamboo charcoal in the soil. In 'Proceedings of International Conference on O-cha (tea) Culture and Science.' Tokyo: World Green Tea Association. pp. 147–150. IPCC. 2005. In 'IPCC special report on carbon dioxide capture and storage', eds. B. Metz, O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer. Cambridge and New York: Cambridge University Press. IPCC. 2007. In 'Climate change 2007:The Physical Science Basis. Contribution of Working Group I to the fourth Assessment Report of the Intergovernmental Panel on Climate Change', eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller. Cambridge and New York: Cambridge University Press. IPCC. 2013. In 'Climate change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change', eds. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley. Cambridge and New York: Cambridge University Press. ISO. 2006. ISO 14064-1. Greenhouse gases -- Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals. International Organization for Standardization. Geneva. Jones, D., D. Murphy, M. Khalid, W. Ahmad, G. Edwards-Jones, and T. DeLuca. 2011. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 43: 1723-1731. Keiluweit, M., P. S. Nico, M. G. Johnson, and M. Kleber. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44: 1247-1253. Kool, D., N. Wrage, S. Zechmeister?Boltenstern, M. Pfeffer, D. Brus, O. Oenema, and J.-W. Van Groenigen. 2010. Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual?isotope labelling method. Eur. J. Soil Sci. 61: 759-772. Lajtha, K., C. T. Driscoll, W. M. Jarrell, and E. T. Elliott.1999. Soil phosphorus: characterization and total element analysis. In 'Standard soil methods for long-term ecological research', New York: Oxford University Press. pp. 115-142. Lehmann, J. 2007. A handful of carbon. Nature. 447: 143-144. Lehmann, J. 2009. Biological carbon sequestration must and can be a win-win approach. Clim. Change 97: 459-463. Lehmann, J. and S. Joseph. 2009. Biochar for environmental management: science and technology Earthscan. 1st. London: Earthscan. Lima, H. N., C. E. Schaefer, J. W. Mello, R. J. Gilkes, and J. C. Ker. 2002. Pedogenesis and pre-Colombian land use of 'Terra PretaAnthrosols' ('Indian black earth') of Western Amazonia. Geoderma 110: 1-17. Linn D. M. and J. W. Doran. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 48: 1267-1272. Manley, J., G. C. van Kooten, K. Moeltner, and D.W. Johnson. 2005. Creating carbon offsets in agriculture through no-till cultivation: a meta-analysis of costs and carbon benefits. Clim. Change 68: 41-65. Masulili, A., W. H. Utomo, and M. Syechfani. 2010. Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J. Agr. Sci. 2: 39. McLean, E. O. 1982. Soil pH and lime requirement. In 'Methods of soil analysis. Part 2. Chemical and microbiological properties' 2nd eds. A. L. Page R. H., Miller, and D. R. Keeney. pp. 199-224. Madison, WI: Am. Soc. Agron. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plan. 15: 1409-1416. Meyer, S., B. Glaser, and P. Quicker. 2011. Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ. Sci. Technol. 45: 9473-9483. Mosier, A. 1998. Soil processes and global change. Biol. Fert. Soils 27: 221-229. N?gele, W. and R. Conrad. 1990. Influence of pH on the release of NO and N2O from fertilized and unfertilized soil. Biol. Fert. Soils 10: 139-144. Neves, E., R. Bartone, J. Petersen, and M. Heckenberger. 2001. The timing of Terra Preta formation in the central Amazon: new data from three sites in the central Amazon. In 'Amazonian Dark Earth: Origin, Properties, Management', ed. J. Lehmann, D. C. Kern, B. Glaser, W. I. Woods, pp. 125-134. Belgium: Kluwer Academic Publishers. Ornstein, L., I. Aleinov, and D. Rind. 2009. Irrigated afforestation of the Sahara and Australian Outback to end global warming. Clim. Change 97: 409-437. Owuor, P. O. and D. K. Cheruiyot. 1989. Effects of nitrogen fertilizers on the aluminium contents of mature tea leaf and extractable aluminium in the soil. Plant Soil 119: 342-345. Rajkovich, S., A. Enders, K. Hanley, C. Hyland, A. R. Zimmerman, and J. Lehmann. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fert. Soils 48: 271-284. Ruser, R., H. Flessa, R. Russow, G. Schmidt, F. Buegger, and J. Munch. 2006. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biol. Biochem. 38: 263-274. Schmidt, M. W. and A. G. Noack. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem. Cy. 14: 777-793. Shand, C. A., B. L.Williams, andG. Coutts. 2008. Determination of N-species in soil extracts using microplate techniques. Talanta 74: 648-654. Singh, B. P., B. P. Hatton, B. Singh, A. L. Cowie, and A. Kathuria. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39: 1224-1235. Spokas, K. A. 2010. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manage. 1: 289-303. Spokas, K. A. and D. C. Reicosky. 2009. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci. 3: 4. Spokas, K. A., W. Koskinen, J. Baker, and D. Reicosky. 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77: 574-581. Taghizadeh-Toosi, A., T. J. Clough, L. M. Condron, R. R. Sherlock, C. R. Anderson, and R. A. Craigie. 2011. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J. Environ. Qual. 40: 468-476. Vamvuka, D. 2011. Bio?oil, solid and gaseous biofuels from biomass pyrolysis processes—An overview. International J. Energy Res. 35: 835-862. Van Kooten, G. C., A. J. Eagle, J. Manley, and T. Smolak. 2004. How costly are carbon offsets? A meta-analysis of carbon forest sinks. Environ. Sci. Policy 7: 239-251. Van Zwieten, L., S. Kimber, S. Morris, A. Downie, E. Berger, J. Rust, and C. Scheer. 2010. Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Res. 48: 555-568. Wardle, D. A., M.-C.Nilsson, and O. Zackrisson. 2008. Fire-derived charcoal causes loss of forest humus. Science 320: 629-629. Warnock, D. D., J. Lehmann, T. W. Kuyper, and M. C. Rillig. 2007. Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 300: 9-20. Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. chem. 39: 971-974. Wuebbles, D. J. and K. Hayhoe. 2002. Atmospheric methane and global change. Earth-Sci. Rev. 57: 177-210. Yanai, Y., K. Toyota, and M. Okazaki. 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 53: 181-188. Zeng, N. 2008. Carbon sequestration via wood burial. Carbon Balance Manage. 3: 1.
摘要: 
本論文欲利用種植於有機茶園之台茶十二號經剪枝,以高溫焙燒而成之茶枝生物炭,施用於酸性土壤和水旱輪作土壤,觀察其溫室氣體釋放之情形。酸性土壤係指有機茶園之紅土,而水旱田輪作土壤則是平地田土。土壤培育部分,先是以不同充水孔隙觀察兩種土壤氧化亞氮釋放之情形,了解高充水孔隙時,兩種土壤氧化亞氮釋放量明顯高於低充水孔隙,再添加不同比例之茶枝生物炭後,發現紅土混入高比例之生物炭有助於抑制氧化亞氮產生,而紅土混入低比例之生物炭,則會促進氧化亞氮釋放,另將不同溫度焙燒而成之茶枝生物炭混入兩種土壤中,皆觀察到高溫焙燒而成的茶枝生物炭 (350℃和500℃) 可降低土壤氧化亞氮釋放,且以土壤混入2%茶枝生物炭有較佳之效果,而茶樹盆栽試驗則顯示和土壤培育類似之結果。
URI: http://hdl.handle.net/11455/89547
其他識別: U0005-2811201416174960
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7100031203-1.pdf4.21 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.